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Neuromorphic computing based on single-electron circuit technology is gaining prominence
because of recent claims about its massively increased computational efficiency and its increasing
relevance between computer technology and nanotechnology [1], [2]. Its impact will be strongly
felt maximum when single-electron circuits can operate at room temperature, based on fault-
and noise-tolerant neural structures. In this paper, inspired by stochastic resonance (SR) in
an ensemble of spiking neurons [3], we designed a basic single-electron neural component and
examined its statistical results on the network.

A single-electron box, in which a quantum dot lies between a nanoscale tunnel junction with
capacitance C' and a gate capacitance C'q whose order of magnitude is close to that of C, is the
simplest tunnel junction circuit [4]. We see a significant similarity between single-electron boxes
and conductance-based neuron models, that is the tunnel junction and Cg in a single-electron
box correspond to a voltage-controlled gate and membrane capacitance in the neuron model,
respectively. Furthermore, electron tunneling at the junction results in a sudden voltage change
on the quantum dot (therefore it corresponds to a spike generation in neurons) and is easily
perturbed by thermal fluctuations, as in real neurons.

Our primary interest here is whether single-electron box neurons can overcome (or utilize)
thermal fluctuations, based on the SR described in [3]. In the experiments, the subthreshold
spike inputs given at each quantum dot resulted in no electron tunneling (firing) without external
noises. We calculated the correlation values (¢) between the input and output spikes for the
increasing temperature 7' (increasing magnitude of noise). The results showed characteristic
signatures of SR-type behavior: a rapid rise to a peak, and then a decrease at high temperatures.
As the number of single-electron neurons (V) increased, the peak value of ¢ increased; e.g., it
approached 1.0 when N = 50 and T' = 20 K, even with a given signal-to-threshold distance (not
optimized). This implies that a neuromorphic approach based on the SR model is one possible

way to construct fault-tolerant computing systems on nanodevices.
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