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Abstract

We designed subthreshold analog MOS circuits implement-
ing an inhibitory network model that performs noise-shaping
pulse-density modulation with noisy neural elements. Our
aim is to develop a possible ultralow-power delta-sigma-type
one-bit analog-to-digital converter. Through circuit simula-
tions we confirmed that the signal-to-noise ratio of the net-
work was improved by 7.9 dB compared with that of the un-
coupled one as a result of noise shaping.

1. Introduction

In the research reported in this paper, we aim to develop
a possible ultralow-power one-bit analog-to-digital converter
(ADC). A one-bit ADC converts analog input signals to digi-
tal pulse streams where the analog information is represented
in the time domain. This operation is referred to as pulse-
density modulation (PDM). A similar operation can be found
in spiking neurons , e.g., integrate-and-fire neurons (IFNs)
[1]. The firing rate of the neuron increases as the input mag-
nitude incresases. Hence, the spike trains, e.g., the density of
spikes per second, represent analog values consisting of 1-0
digital streams. Therefore a one-bit ADC could theoretically
be developed by implementing such a neuron circuit on ana-
log VLSIs. In practice, however, it is not easy to develop an
ADC with a neuron circuit due to the existence of quantiza-
tion, static and dynamic noises from the natural environment.
The quantization noises can be eliminated by employing a
sigma-delta modulator [2], but, eliminating the static noises
requires an additional calibration process after chip fabrica-
tion, and eliminating dynamic noises requires a special isola-
tion device.

In this paper, we explore a possible way to handle both
static and dynamic noises in analog integrated circuits by
employing neuromorphic architectures. To achieve this, we
employ a population model of spiking neurons that exhibits
noise shaping [3]. Through circuit simulations of the network
circuit, we demonstrate that the network can improve the sys-

tem’s signal-to-noise ratio (SNR) as a result of effectively us-
ing the static and dynamic noises.

2. Subthreshold CMOS circuits for implementing Mar’s
inhibitory neural network

An inhibitory network model that exhibits noise shap-
ing with noisy elements was proposed by Maret al. [3].
This network consists ofN IFNs whose membrane poten-
tial is reset to random values after each firing, whereas the
synaptic weights between inputs and IFNs are randomly dis-
tributed.They demonstrated that this noisy network model
could improve the SNR as a result of noise shaping as ob-
served in conventional sigma-delta-type ADCs [2].

We implemented Mar’s noisy IFN using a subthreshold
CMOS neuron circuit proposed by Asaiet al. [4]. All the
MOS transistors in the circuit operate in their subthreshold re-
gion, which ensures ultralow-power consumption as a whole.
Therefore, it is suitable for achieving our purpose.

Figure 1(a) shows a schematic of the neuron circuit where
C1 and C2 represent capacitances,Vm,i the membrane po-
tential of thei-th neuron circuit,Ui the refractory potential,
Ii the external input current,Iout,i the quantized (spike) out-
put current,Iref the reference current for the quantization,
Id,i the external fluctuation (dynamic noise), andVI,i the in-
hibitory input. When all the transistors are operating in their
subthreshold region [5], the node equations of the circuit are
given by

C1
dVm,i

dt
= Ii − I0 exp(κUi/Vt) + Id,i (1)

C2
dUi

dt
= I0 exp(κVI,i/Vt) − Iref + Id,i (2)

whereI0 is the fabrication parameter,κ the effectiveness of
the gate potential, andVt a temperature dependent term. The
maximum value ofIout is regulated by a current mirror (M3
and M4) with reference currentIref .

A schematic of the network circuit is shown in Fig. 1(b).
Since Mar’s network model has uniform inhibitory connec-
tion strengths, we can reduce the wiring complexity from
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Figure 1: (a) Subthreshold neuron circuit and (b) network
circuit consisting of three noisy neuron circuits and additional
circuits (M1, M2 and M3) acting as a global inhibitor

O(N2) to O(N) [6] by introducing a global inhibitor, which
facilitates the hardware implementation. The network circuit
consists of the noisy neuron circuits and additional MOS cir-
cuits (M1, M2 and M3) implementing the global inhibitor.
We employ three neurons (N = 3) to achieve small de-
vice sizes and minimum power consumption. Current out-
puts of noisy neuron circuits (Iout,i) are summed by M1. The
summed current is mirrored by a current mirror (M1 and M2)
with a mirror ratio of 1:K. Therefore, the output current
(iout) is given byK

∑3
i=1 Iout,i. Since M3 in Fig. 1(b) and

M2 in Fig. 1(a) forms a current mirror, membrane potentials
(Vm,i for all i) are decreased wheniout is increased, which
results in the global inhibition of all the neuron circuits.

To embed the random synaptic weights (static noises) of
Mar’s neural network, we introduced nonuniform input cur-
rentIi for each neuron. Instead of implementing random reset
of the membrane potential of Mar’s neural network, we intro-
duced dynamic noises by random current pulses (Id,i), whose
inter-spike-intervals (ISIs) obey the Poisson distribution, for
nodesVm,i andUi. The oscillation phase of Mar’s network
is increased by resetting the membrane potential, whereas
that of the proposed circuit is increased by the current pulses
(Id,i). Therefore, applying random current pulses to nodes
Vm,i andUi is qualitatively the same as the random reset in
Mar’s original network.
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Figure 2: Time courses ofVm,i for with and without dynamic
noise.

3. Simulation results

In the following circuit simulations, we assumed 1.5-µm
CMOS process (MOSIS, Vendor: AMIS). First, we simulated
the neuron circuit shown in Fig. 1(a) to examine the effect of
the random current pulses on the circuit as dynamic noises.
We assumed that MOS transistors have the same dimension
of W/L = 1.6µm/4µm, except for MOS transistors in cur-
rent mirrors (W/L = 16µm/4µm). The external analog in-
put current (Ii) and the reference current (Iref ) were set to
1 nA. The capacitances (C1 andC2) were set to 1 pF, and
the inhibitory input voltage (VI,i) was set to zero. The ran-
dom current pulsesId,i obeying the Poisson distribution (the
mean and variationλ = 5000) were generated with an ampli-
tude of 1 nA and the pulse width of 10µs. Figure 2 shows
the time courses of membrane potentials of noiseless (Id,i =
0) and noisy (Id,i 6= 0) neurons. In Fig. 2(a), we observed
periodic oscillation ofVm,i, whereas nonperiodic oscillation
was observed in Fig. 2(b) because the phase was randomly in-
creased by the random current pulses (Id,i). Since the neuron
circuit produces spike outputs (Iout,i) whenVm,i is suddenly
decreased, the operation shown in Fig. 2(b) is equivalent to
randomly resetting the membrane potential after the neuron’s
firing.

Here, we describe how to determine the inhibitory connec-
tion strengthK. Since a network with large values ofK in-
hibits neurons severely, neurons with small inputs can not sur-
vive [3]. Therefore we have to choose an appropriateK for
which all neurons can survive. Through our circuit simula-
tions, we found that all neuron could survive whenK ≤ 3.
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Figure 3: Auto correlation functions of output of network cir-
cuit when inhibitory connection strengthK = 1, 2, and 3.

To determine the best value ofK, we evaluated the perfor-
mance of the PDM circuit. As described in Sect. 1, the PDM
circuit produces an output spike density that depends only
on the intensity of inputs in the ideal case. In other words,
the PDM circuit produces spikes periodically when the in-
puts is constant. Therefore, we setK so that the outputs of
the circuit had high periodicity. Since the auto correlation
function (ACF) can quantify the periodicity of the output, it
is appropriate to determine the performance of the circuit by
calculating ACFs. Because the performance of Mar’s model
is increases in proportion toK [3], we expected that the most
appropriate value ofK that is 3 or less would be 3 in or-
der to acquire the best performance. We calculated ACFs of
quantizediout [≡ V (t)] where iout was quantized to 0 (or
1) wheniout was smaller (or larger) than 0.8 nA, forK =
1, 2 and 3. Figure 3 shows the results for the ACFs with
α(τ) = 〈V (t′)V (t′ − τ)〉. AsK increased, correlation peaks
appeared and apparent periodicity was observed whenK = 3.
Therefore, we setK = 3 where all neurons survive and the
highest periodicity is observed.

Figure 4 compares the network circuit operations when
K = 0 (uncoupled) andK = 3 (coupled). WhenK = 0
[Fig. 4(a)], iout exhibited nonperiodic oscillations. Noisy
neuron circuits fired incoherently. (See raster plots in the fig-
ure. Symbols+, × and∗ represent the firing events of the
first, second and the third neuron circuits, respectively.) The
resulting ISIs of output spike trains were random. On the
other hand, whenK = 3, iout exhibited almost periodic os-
cillations [Fig. 4(b)]. The raster plots in the figure show sig-
nificant differences between firing frequencies of three noisy
neuron circuits as compared to the raster plots in Fig. 4(a).
The resulting ISIs of output spike trains were almost uniform,
as expected.

Figure 5 shows ISI histograms of the uncoupled (K = 0)
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Figure 4: Comparison of network circuit operations when
K = 0 (uncoupled network) andK = 3 (coupled network).

and coupled (K = 3) network circuits where 1500 firing
events were gathered with∆ = 0.01 ms. WhenK = 0,
we observed a Poisson-type distribution of ISIs (solid line
in Fig. 5) because each neuron circuit was driven by inde-
pendent noise sources and thus fired incoherently. When
K = 3, a Gaussian-type distribution was observed (dashed
line in Fig. 5). Once a neuron circuit receiving the maximum
external input fires, the network is globally inhibited. After
this firing, the neuron circuit operates in its refractory state.
Therefore, ISIs of this neuron are higher than in the uncou-
pled case. Also, the neuron circuit cannot fire when the other
neuron circuit receiving a smaller input than the maximum
input, fires. Therefore, ISIs of output spike trains follow ISIs
of a neuron receiving the maximum input, and the ISIs are
averaged over the firing events of all neurons.

Figure 6 shows the PSD of the coupled (K = 3) and
uncoupled (K = 0) networks with sinusoidal inputs (Ii =
I0 + A sin(2πft), I0 = 1 nA,A = 50 pA,f = 100 Hz) where
16 trials were averaged with a square window function. The
measured SNR of the uncoupled network was 10.2 dB, while
that of the coupled one was 18.1 dB, which indicated that the
noise level of the coupled network was less than one tenth
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Figure 5: ISI histograms for uncoupled (K = 0) and coupled
(K = 3) networks.

of that of the uncoupled network below the cutoff frequency
(< 103 Hz).

The external random current pulse obeying Poisson distri-
bution is theoretically anti-correlated noise. The change in
ISI distributions from the Poisson type to Gaussian type in
Fig. 5 implies that the amount of noises was decreased by the
effect of the global inhibition. As observed in raster plots in
Fig. 4(b), individual neurons fired irregularly and thus seemed
not to contribute to the signal transmission between the ana-
log input and the digital (spike) output. Moreover, since the
firing order of the neurons was also random, they seemed to
fire incoherently. However, the resulting output, the sum of
firing events of neurons shown at the bottom of Fig. 4(b), was
almost periodic. This mechanism appeared in the resulting
PSD (Fig. 6) as noise suppression, which implies that the cou-
pled network is immune to both static and dynamic noises un-
like the uncoupled network, which critically depends on the
noise characteristics of individual neurons.

4. Conclusion

We investigated a possible way to develop a one-bit analog-
to-digital converter in a noisy environment. We proposed
a network circuit inspired by neuromorphic architectures to
subtly utilize static and dynamic noises in VLSIs. We em-
ployed a population model of spiking neurons [3]. This model
has a network using inhibitory coupling that exhibits noise
shaping. We implemented this model with subthreshold MOS
circuits to actively employ noise. The static and dynamic
noise applied to the circuit for noise shaping were obtained
from device mismatches of current sources and externally ap-
plied random (Poisson) spikes, respectively. A coupled net-
work produced a Gaussian-like distribution of inter-spike in-
tervals (ISIs), while an uncoupled one had a broad distribu-
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Figure 6: Power spectra of uncoupled (K = 0) and coupled
(K = 3) networks.

tion of ISIs. Through circuit simulations we confirmed that
the signal-to-noise ratio of a coupled network was improved
by 7.9 dB compared with that of an uncoupled one as a result
of noise shaping.
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