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Abstract tem’s signal-to-noise ratio (SNR) as a result of effectively us-
ing the static and dynamic noises.

We designed subthreshold analog MOS circuits implement-

ing an inhibitory network model that performs noise-shaping g, pthreshold CMOS circuits for implementing Mar's

pulse-density modulation with noisy neural elements. Oi‘r‘lrhibitory neural network

aim is to develop a possible ultralow-power delta-sigma-type

one-bit analog-to-digital converter. Through circuit simula- An inhibitory network model that exhibits noise shap-

tions we confirmed that the signal-to-noise ratio of the nég with noisy elements was proposed by Matral. [3].

work was improved by 7.9 dB compared with that of the urrhis network consists oV IFNs whose membrane poten-

coupled one as a result of noise shaping. tial is reset to random values after each firing, whereas the
synaptic weights between inputs and IFNs are randomly dis-

_ tributed.They demonstrated that this noisy network model
1. Introduction could improve the SNR as a result of noise shaping as ob-

served in conventional sigma-delta-type ADCs [2].

In the research reported in this paper, we aim to developwe implemented Mar's noisy IFN using a subthreshold
a possible ultralow-power one-bit analog-to-digital convertgivios neuron circuit proposed by Asef al. [4]. All the

(ADC). A one-bit ADC converts ana!og mput_Slg_na|S to digigyos transistors in the circuit operate in their subthreshold re-
tal pulse streams where the analog information is represerg%, which ensures ultralow-power consumption as a whole.
in the time domain. This operation is referred to as p”|3?herefore, it is suitable for achieving our purpose.

density modulation (PDM). A similar operation can be found Figure 1(a) shows a schematic of the neuron circuit where

in spiking neurons , e.g., integrgte-and-fire neurons (IFI@? and C, represent capacitancek,, ; the membrane po-
[1_]' Th_e firing rate of the neuron INCreases as the input Mafntial of thei-th neuron circuitl; the refractory potential,
nlt_ude incresases. Hence, the spike trains, e.g., th_e fjensn){ % e external input current, . ; the quantized (spike) out-
spikes per second, represent analog values consisting of kil ¢ yrrent, 1,.; the reference current for the quantization,
digital streams. Therefore a one-bit ADC could theoretical Y . the external fluctuation (dynamic noise), a¥id the in-

be developed by implementing such a neuron circuit on arPﬁiitory input. When all the transistors are operating in their

log VLSIs. In practice, however, it is not easy to develop alyyhreshold region [5], the node equations of the circuit are
ADC with a neuron circuit due to the existence of quanUzaiven by

tion, static and dynamic noises from the natural environment.

The quantization noises can be eliminated by employing a Cl% = I, — Ipexp(kU;/Vi) + Ia (1)
sigma-delta modulator [2], but, eliminating the static noises dt '

requires an additional calibration process after chip fabrica- s dU; = Toexp(kVii/Vi) — Let + Iai  (2)
tion, and eliminating dynamic noises requires a special isola- dt ' '

tion device. wherel is the fabrication parametex, the effectiveness of

In this paper, we explore a possible way to handle bdtie gate potential, and, a temperature dependent term. The
static and dynamic noises in analog integrated circuits maximum value ofl, is regulated by a current mirror (M3
employing neuromorphic architectures. To achieve this, wad M4) with reference curreiif.
employ a population model of spiking neurons that exhibits A schematic of the network circuit is shown in Fig. 1(b).
noise shaping [3]. Through circuit simulations of the netwo&ince Mar’s network model has uniform inhibitory connec-
circuit, we demonstrate that the network can improve the syien strengths, we can reduce the wiring complexity from
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Figure 1. (a) Subthreshold neuron circuit and (b) network
circuit consisting of three noisy neuron circuits and additiongl

circuits (M1, M2 and M3) acting as a global inhibitor Simulation results

In the following circuit simulations, we assumed LBy
CMOS process (MOSIS, Vendor: AMIS). First, we simulated

the neuron circuit shown in Fig. 1(a) to examine the effect of

O(N?) to O(N) [6] by introducing a global inhibitor, which the random current pulses on the circuit as dynamic noises.
facilitates the hardware implementation. The network circyije assumed that MOS transistors have the same dimension
consists of the noisy neuron circuits and additional MOS cigf W/L = 1.6um/4um, except for MOS transistors in cur-
cuits (M1, M2 and M3) implementing the global inhibitoryent mirrors W/L = 16um/4um). The external analog in-
We employ three neuronsV( = 3) to achieve small de- pyt current {;) and the reference current,(;) were set to
vice sizes and minimum power consumption. Current oyt-na. The capacitance<’{ and C,) were set to 1 pF, and
puts of noisy neuron circuitd {u;,;) are summed by M1. Thethe inhibitory input voltage(; ;) was set to zero. The ran-
summed current is mirrored by a current mirror (M1 and M2bm current pulse, ; obeying the Poisson distribution (the
with a mirror ratio ofglK . Therefore, the output currentnean and variation = 5000) were generated with an ampli-
(iout) is given by K > 7, Ioue,i- Since M3 in Fig. 1(b) and yde of 1 nA and the pulse width of 3@s. Figure 2 shows
M2 in Fig. 1(a) forms a current mirror, membrane potentiajiie time courses of membrane potentials of noisel&gs ¥
(Vim,; for all 4) are decreased whep,; is increased, which 0) and noisy {4, # 0) neurons. In Fig. 2(a), we observed
results in the global inhibition of all the neuron circuits. periodic oscillation ofi7, ;, whereas nonperiodic oscillation

To embed the random synaptic weights (static noises)vedis observed in Fig. 2(b) because the phase was randomly in-
Mar’s neural network, we introduced nonuniform input cucreased by the random current pulsks;§. Since the neuron
rentI; for each neuron. Instead of implementing random res#tcuit produces spike outputs,(; ;) whenV,, ; is suddenly
of the membrane potential of Mar’s neural network, we introecreased, the operation shown in Fig. 2(b) is equivalent to
duced dynamic noises by random current pulégs)( whose randomly resetting the membrane potential after the neuron’s
inter-spike-intervals (1SIs) obey the Poisson distribution, féring.
nodesVy, ; andU;. The oscillation phase of Mar's network Here, we describe how to determine the inhibitory connec-
is increased by resetting the membrane potential, wheréan strength/. Since a network with large values &f in-
that of the proposed circuit is increased by the current pul$disits neurons severely, neurons with small inputs can not sur-
({4,:)- Therefore, applying random current pulses to nodese [3]. Therefore we have to choose an appropridtéor
Vm,; andU; is qualitatively the same as the random resetwhich all neurons can survive. Through our circuit simula-
Mar’s original network. tions, we found that all neuron could survive whEn< 3.
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To determine the best value &f, we evaluated the perfor- neuron f 3
mance of the PDM circuit. As described in Sect. 1, the PDMIndex { i
circuit produces an output spike density that depends onlgpike [
on the intensity of inputs in the ideal case. In other wordsjrain

the PDM circuit produces spikes periodically when the in-

puts is constant. Therefore, we g€tso that the outputs of

the circuit had high periodicity. Since the auto correlation

function (ACF) can quantify the periodicity of the output, it . . - .
is appropriate to determine the performance of the circuit%ﬂure 4. Comparison of network circuit operations when
calculating ACFs. Because the performance of Mar's model — 0 (uncoupled network) anél” = 3 (coupled network).

is increases in proportion t& [3], we expected that the most

appropriate value of{ that is 3 or less would be 3 in or-

der to acquire the best performance. We calculated ACFs,pf coupled K = 3) network circuits where 1500 firing
quantizedi,,; [= V(t)] wherei,,; was quantized to 0 (Or gyents were gathered with = 0.01 ms. Whenk = 0,
1) whenioy,, was smaller (or larger) than 0.8 nA, féf = \ye ohserved a Poisson-type distribution of ISIs (solid line
1, 2 and 3. Figure 3 shows the results for the ACFs Wil Fig. 5) because each neuron circuit was driven by inde-
a(r) = (V(I")V(t' —7)). As K increased, correlation peakendent noise sources and thus fired incoherently.  When
appeared and apparent periodicity was observed wiher8. - _ 3 3 Gaussian-type distribution was observed (dashed
Therefore, we seli = 3 where all neurons survive and thgne in Fig. 5). Once a neuron circuit receiving the maximum
highest periodicity is observed. external input fires, the network is globally inhibited. After
Figure 4 compares the network circuit operations whefis firing, the neuron circuit operates in its refractory state.
K = 0 (uncoupled) ands’ = 3 (coupled). WhenK = 0 Therefore, ISls of this neuron are higher than in the uncou-
[Fig. 4(a)], ious exhibited nonperiodic oscillations. Noisypled case. Also, the neuron circuit cannot fire when the other
neuron circuits fired incoherently. (See raster plots in the figeuron circuit receiving a smaller input than the maximum
ure. Symbolst, x andx* represent the firing events of thenput, fires. Therefore, ISIs of output spike trains follow ISls
first, second and the third neuron circuits, respectively.) Tbea neuron receiving the maximum input, and the ISIs are
resulting ISIs of output spike trains were random. On tkgeraged over the firing events of all neurons.
other hand, whet( = 3, i,,; exhibited almost periodic 0s- Figure 6 shows the PSD of the couplefl (= 3) and
cillations [Fig. 4(b)]. The raster plots in the figure show Sigmcoupled K = 0) networks with sinusoidal inputdy{ =
nificant differences between firing frequencies of three noigy - Asin(2rft), Iy =1 nA, A =50 pA, f = 100 Hz) where
neuron circuits as compared to the raster plots in Fig. 4(@4 trials were averaged with a square window function. The
The resulting ISIs of output spike trains were almost uniforffheasured SNR of the uncoupled network was 10.2 dB, while
as expected. that of the coupled one was 18.1 dB, which indicated that the
Figure 5 shows ISI histograms of the uncoupléd £ 0) noise level of the coupled network was less than one tenth
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Figure 5: 1SI histograms for uncouplef (= 0) and coupled Figure 6: Power spectra of uncoupleil = 0) and coupled
(K = 3) networks. (K = 3) networks.

of that of the uncoupled network below the cutoff frequendipn Of ISIs. Through circuit simulations we confirmed that
(< 103 Hz). the signal-to-noise ratio of a coupled network was improved

The external random current pulse obeying Poisson disfY. /-9 dB compared with that of an uncoupled one as a result

bution is theoretically anti-correlated noise. The change Ghn0ise shaping.

ISI distributions from the Poisson type to Gaussian type in

Fig. 5 implies that the amount of noises was decreased by the References
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