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Abstract

We proposed a retinomorphic neural network model in [1]
and through simulations observed a new type of stochastic
resonance where nonzero receptive field size has maximal
correlation between the subthreshold inputs and outputs. We
theoretically prove that this kind of stochastic resonance oc-
curs in the retinomorphic model proposed in [1] in this paper.
We discuss several constraints to derive a theoretical equa-
tion that explains this phenomenon and show that not only
certain noises intensity provide the optimal performance of
signal detection but also nonzero receptive field size is a fac-
tor as well.

1. Introduction

Stochastic resonance (SR) has recently been spotlighted in
the field of electrical engineering, which is motivated by a
wide variety of sensing applications for detecting weak sig-
nals. Among the SR applications, night-scope (dark) image
sensing [2] seems to be particularly promising in semicon-
ductor research fields because present image sensors use very
precise (and thus expensive) devices for photon sensing or
counting. However, SR would be useful only for detecting
dark light in a single photosensor, but not for canceling mis-
matches between the photosensors in the sensor array (image
sensor).
Recently, Funke et al. reported that a visual pathway in a

cat’s primary visual cortex optimally used a SR-like process
to improve signal detection while preventing spurious noise-
induced activity and keeping the SNR high [3]. Although
the mechanism is still unclear, one may assume that i) SR
without optimal tuning of the noise intensities [4] underlies
the fundamental mechanism and ii) the visual pathway from
the photoreceptors to the cortical neurons may cause an ex-
tremely large receptive field (RF). Under these assumptions,
we consider a relatively short pathway, i.e., from the photore-
ceptors to the subsequent layer in the vertebrate retinae, and
propose a retinomorphic neural network that has parallel SR
components with variable RFs.
Motivated by the results obtained by Funke et al. [3], we

proposed a simple retinomorphic neural network consisting
of nonidentical photoreceptors for the development of image
sensor systems [1]. We used numerical simulations to ob-
serve a new class of stochastic resonance among the noniden-
tical pixels. We calculated the correlation values between the
optical inputs and outputs as a function of the receptive field
(RF) size and intensities of the random components in the
photoreceptors and the McCulloch-Pitts neurons (thresholds
elements). We then found the optimal nonzero sizes of the RF
as well as the optimal noise intensities of the neurons under
the nonidentical photoreceptors.
We provide a theoretical analysis for this neural network

model in this paper to confirm that setting the receptive field
size to an optimal value improves the performance when there
are spatial noises caused by the photodetectors in this model.
In Sec. 2, a structure of the neural network model is briefly
explained. In addition, a theoretical analysis of this network
is presented in Sec. 3. In Sec. 4, our simulation and theoreti-
cal results are compared.

2. Retinomorphic neural network model

Let us consider the 1-D network shown in Fig. 1 where the
optical input distribution is represented by I(x). The output
distribution of the photoreceptors is defined by I(x) + δ(x),
where δ(x) represents the spatial random noise (pixel varia-
tions) given by m · N(0, 1) [N(0, 1) is the Gaussian noise with
a zero mean and a unity standard deviation]. The input to the
neurons via the local synaptic layer between the photorecep-
tors and the neurons is then defined by

R(x) =
∫ (

I(y) + δ(y)
)
· g(y − x) dy ≡ (I + δ) ∗ g, (1)

g(x) =
1√
2πσ

exp
[
− x2

2σ2

]
, (2)

where σ represents the receptive field (RF) size. The output
distribution of the neurons is defined by V(x) = H

(
R(x)−ξ(t)

)
,

where H(·) represents a step function and ξ(t) is the tempo-
ral random noise given by A · N(0, 1) + θ (A: noise intensity,
θ: mean threshold). The final output via the local synaptic
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Figure 1: Receptive field model proposed in [1]. The squares
represent photoreceptors with spatial noise δ receiving opti-
cal input I(x), The circles in the middle of the figure repre-
sents threshold elements with a threshold θ receiving tempo-
ral noises ξ(t), and the circles at the bottom of the figure rep-
resent the final cells that produce outputs O(x). The input of
the threshold elements is given by (I + ξ) ∗ g and the input of
the final cells is given by V ∗ g, where g is a Gaussian distri-
bution function whose standard deviation is σ and its average
is 0.

layer between the neurons and the output cells is then given
by O(x) = V ∗ g. The optical input I(x) is set to S · H(x),
where S represents the strength of the input. With this model,
we analyze the SR behaviors by systematically changing m
(spatial randomness), σ (RF size), and A (temporal random-
ness that is necessary for SR).

3. Theoretical Analysis

We first consider the dependence of the output O(x) on the
noise intensity Awhen RF sizeσ is small, i.e., g(x) is the delta
function and the spatial noises of the photodetectors m are 0.
In this case, commonly-known stochastic resonance would be
observed in this model where the subthreshold inputs I(x) that
are given to the threshold elements were amplified by apply-
ing temporal noises ξ(t) to the threshold elements. Here, we
consider the mean squared error E between optical input I(x)
and the time-averaged output 〈O(x)〉 to evaluate the charac-
teristics of our model. We define the mean squared error E in
the model as

E =
1
X

∫ X/2

−X/2

(
〈O〉 − I(x)

)2
dx, (3)

where X represents the domains of I(x) and O(x). As de-
scribed in Sec. 2, the output of the threshold elements V(x)

is (I + δ(x)) ∗ g(x) and the output of the final cells O(x) is
V(x)∗g(x). The threshold elements receiving temporal noises
may respond to the subthreshold inputs if the sum of the in-
puts and the temporal noises exceeds the threshold values of
the threshold elements. The response strongly depends on
the noise sequences, i.e., the neuron’s output would be 1-bit
temporal random sequences (time varying sequences of 0 and
1). When the output of the threshold elements V(x) is av-
eraged over time; the averaged value 〈V〉 converges to static
values. By considering the effect of time averaging, the equa-
tion for the mean squared error between I(x) and 〈O〉 is quite
simple. If noises are applied to the neurons with an optimal
intensity, the time-averaged output of the threshold elements
〈V〉 converges to the subthreshold input, i.e., 〈V〉 is strongly
correlated with the input. Thus, the output of the threshold
elements can be represented by its input. We used uniform
noises for simplicity reasons, rather than Gaussian noises
which often yields complex equations. When the noises has
a uniform distribution (range of value is given by [−A′ : A′]),
the output is equal to its input at an optimal intensity. 〈V〉 is
equal to 〈R〉 which represents the input of the threshold el-
ements because the threshold elements simply transfer their
inputs 〈R〉 to their outputs 〈V〉 when optimal noises are ap-
plied. Therefore,

〈O〉 = 〈V〉 ∗ g = 〈R〉 ∗ g = ((I + δ) ∗ g) ∗ g. (4)

By factorizing the equation, we acquire

〈O〉 = ((I ∗ g) ∗ g) + ((δ ∗ g) ∗ g). (5)

g ∗ g (≡ g′) is the convolutions of two Gaussian distribution
functions. g′ follows a Gaussian distribution function whose
standard deviation is

√
2σ. Therefore, E can be rewritten as

E =
1
X

∫ X/2

−X/2

(
(I ∗ g′) + (δ ∗ g′) − I(x))2 dx. (6)

We define E0, E1 and E2 as follows:

E0 =
1
X

∫ X/2

−X/2

((
(I ∗ g′) − I(x)

)
· (δ ∗ g′)

)
dx (7)

E1 =
1
X

∫ X/2

−X/2

((
I ∗ g′) − I(x))2 dx, (8)

E2 =
1
X

∫ X/2

−X/2

((
δ ∗ g′))2 dx. (9)

By using these equations, E yields

E = E1 + 2 · E0 + E2. (10)

E0 ≈ 0 because
(
(I ∗ g′) − I(x)

)
and δ ∗ g′ are uncorrelated.

Therefore E ≈ E1 + E2. This implies that E can be obtained
by independently deriving E1 and E2.
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Figure 2: Receptive field model: (a) having local layer between photodetectors and threshold elements, (b) having local
synaptic layers between photodetectors and threshold elements and between threshold elements and output cells, and (c)
having local synaptic layers between nonidentical photodetectors and threshold elements and between threshold elements
and output cells

Here, we explain the dependence of E on the receptive field
size σ. Figure 2(a) represents a model where the local synap-
tic layers between the threshold elements and the output cell
are removed (O(x) = R(x)) and m is 0. In this case, the E
between I(x) and 〈O〉 is given by

E =
1
X

∫ X/2

−X/2

(
R(x) − I(x)

)2
dx, (11)

=
1
X

∫ X/2

−X/2
((I ∗ g) − I(x))2dx. (12)

I(x) is 0 when x < 0, whereas I(x) is S when x > 0, as
described in Sec. 2, and then

(I ∗ g) = S
∫ X/2

0
g(y − x)dy. (13)

The integral of the Gaussian distribution is given by using an
error function, and we thus obtain

(I ∗ g) = S
2

{
erf
(
X/2 − x√
2σ

)
− erf

(
x√
2σ

)}
(14)

When X is much larger than σ,

(I ∗ g) ≈ S
2

(
1 − erf

(
x√
2σ

))
. (15)

By substituting this equation into Eqn. 12, we can obtain

E =
1
X

∫ X/2

−X/2


I(x) −

S
2

(
1 − erf

(
x√
2σ

))

2

dx, (16)

=
S 2

2X

∫ X/2

0


1 − erf

(
x√
2σ

)

2

dx. (17)

We used the symmetric characteristic of E to obtain the equa-
tion mentioned above.
When two synaptic layers are used as shown in Fig. 2 (b),

the error in this case can simply be obtained by replacing σ
with

√
2σ in Eqn. 17 because the difference between Fig. 2

(a) and (b) is only the variance of the distribution. Therefore,
we obtain

E =
S 2

2X

∫ X/2

0


1 − erf

(
x
2σ

)

2

dx = E1. (18)

The dependence of E on m is explained here. When all the
synaptic layers are removed and δ ! 0,

〈O〉 = 〈V〉 = 〈R〉 = I + δ. (19)

Then, E can simply be expressed by

E =
1
X

∫ X/2

−X/2

(
〈O〉 − I(x)

)2
dx =

1
X

∫ X/2

−X/2
δ2dx, (20)

representing that E is proportional to the spatial noises.
Figure 2 (c) shows a model with the spatial noises of the

photodetectors. Here, we consider the error caused by δ given
by

E2 =
1
X

∫ X/2

−X/2

(
δ ∗ g′)2 dx. (21)

At first, we obtain the equations for δ ∗ g′. It is usually im-
possible to represent stochastic variables with deterministic
variables. However, when X is large enough, only the statisti-
cal characteristics of δ are required; we don’t have to directly
deal with random variables. In the actual calculation, we con-
sider (I+δ)∗g instead of only δ∗g. The (I+δ)∗g in Fig.3(a)
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Figure 3: 1-D plot for O(x) when spatial noises of photode-
tectors are given: (a) Distribution of (I+δ)∗g, (b) Distribution
of z(x) (obtained by arranging (I + δ) ∗ g in ascending order),
and (c) Probability distribution of z

was sorted in ascending order as shown in Fig. 3(b) for con-
venience. The resulting curve is defined as z(x) and is plotted
with a solid curve in Fig. 3(c). As indicated by the area filled
with oblique lines in Fig. 3 (b) E2 is give by

E2 =
1
X

∫ X/2

−X/2
(z(x) − I(x))2 dx = 3

X

∫ 0

−X/4
z(x)2dx. (22)

It should be noted that (I + δ) ∗ g(≡ z(x)) is always positive
because the applied noises have an optimal intensity. Figure 3
(c) shows the probability distribution of z. Here we consider
z(x1) = ∆, as shown in Fig. 3 (b). Then, we obtain

x1 =
X
2

∫ ∆

0
P(z)dz =

X
4
erf
(
∆√
2σo

)
, (23)

where σo is defined as the standard deviation of O(x). We
obtain ∆ =

√
2σoerf−1(4x1/X) by inverting the equation. ∆

represents z(x), and thus, by replacing z(x) with ∆ in Eqn. 22,
we can obtain

E2 =
3
X

∫ 0

−X/4

(√
2σoerf−1

(
4x
X

))2
dx (24)

=
3
X
· 2σ2o

∫ 0

−X/4

(
erf−1

(
4x
X

))2
dx, (25)

where σ2o is given by σ2o = m2/(2
√
πσ). We obtained the

equations for E1 and E2 from Eqns. 18 and 25.

4. Comparison of simulation and theoretical results

Here, we compare the simulation and theoretical results
given in the previous section. The noises that were applied
had an optimal intensity (A′ = 0.5), an input amplitude of 0.3
(S = 0.3), the spatial noises of the photodetectors σ were set
to 0.06, the number of pixel N was set to 500, T was set to
1000, and the threshold of threshold elements was set to 0.5.
Figure 4 shows the dependence of E on σ for the numerical
simulation (dotted curve) and the theoretical equation (solid
curve). E1 and E2 were also plotted. As shown in this figure,
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Figure 4: Comparison between theoretical error (solid curve)
and one obtained by simulations (dotted curve). The errors
from the receptive field (E1) and spatial noises (E2) are also
plotted

the theoretical results quantitatively matched with the simu-
lation results. The E2 plots shows that the error due to spatial
noises was dominant when RF size was small while E1 plots
show that the error due to RF was dominant when RF size was
large . We qualitatively and quantitatively proved that σ can
be minimized by setting the RF size in a retinomorphic neural
network model consisting of nonidentical photodetectors to a
nonzero value.
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