
CIRCUIT IMPLEMENTATION OF HISTORIC ANALOG CELLULAR
AUTOMATA BASED ON WOLFRAM’S RULES 90 AND 150

K. Kawabata, T. Asai, and Y. Amemiya

Graduate School of Information Science and Technology, Hokkaido University, Japan
{kawabata,asai,amemiya}@sapiens-ei.eng.hokudai.ac.jp

Standard cellular automata (CA) employes transition rules where a cell’s state is updated in
terms of the previous state (1 step before) of the cell’s neighbors. This standard framework has
recently been expanded by introducing historic memory capabilities into CAs, i.e., a cell’s state
is updated by not only the neighbor’s previous state but also the past states (2, 3, ..., M steps
before), which resulted in generating statistically good random numbers [1], spatialized prisoner’s
dilemma [2], multi-fractal properties of Wolfram’s rule 90 [3], and so on.

We here propose semi-analog CAs based on Wolfram’s rules 90 and 150 having historic memory
capabilities. Original difference equations of 1-D CAs with rules 90 and 150 are given by
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which represents our analog CA dynamics with historic memories. When α = 1 the equation above
exactly equals to Eq. (1), whereas for α < 1, the historic memory effect appears, i.e., the past cell’s
states are preserved by the leaky integrator as analog values. Because of this analog expansion, the
activate functions f(·) must also be expanded to continuous analog functions. We thus defined the
following two functions:
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{
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θ(x− 1/2)− θ(x− 3/2) + θ(x− 5/2) , x ≡ xt
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,

where θ(x) is the sigmoid function given by [1 + exp(−βx)]−1. Figure 1 plots these functions with
several values of β. Notice that when β → ∞ and x ∈ 0, 1, these functions correspond to the
exclusive OR functions, e.g., in Rule 90, xi−1 ⊕ xi+1 = logical “1” only when xi−1 + xi+1 = 1.
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Figure 1: Activate functions of analog CA based on rules 90 (left) and 150 (right).

We conducted numerical simulations of Eq. (2) with 100 cells. Figure 2 shows the evolution of
the patterns. The initial cell states were x50 = 1 and xi = 0 (i 6= 50). The results showed that
i) the analog CAs generated self-similar patterns both in the rules as conventional CAs when the
historic memory effect was attenuated (α = 1), whereas ii) dense spatial patterns were generated
while maintaining the self-similar properties by historic memories when α < 1.
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Figure 2: Pattern evolution of analog CA with rules 90 (left) and 150 (right).

To evaluate the performance of our analog CAs for random number generation, we defined the
following two variables:
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where H(·) represents the step function. Figure 3 shows Xt-Y t plots (10,000 updates) with the
same initial conditions as in Fig. 2 and random initial conditions. Statistically better random
numbers were generated when α = 0.9, as compared with memoryless cases (α = 1.0).
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Figure 3: Random numbers generated by analog CA with rules 90 (left) and 150 (right).

Finally we designed analog electrical circuits for CMOS LSIs implementing the proposed historic
analog CAs, aiming at the applications to the random-number generation. Figure 4 shows the
construction of the cell circuit. We demonstrate the operations by both circuit simulations (SPICE)
and experiments using discrete semiconductor devices.

Vref

V+ V-

Iout

VDD

VSS

DIF
IoutIin

PCM

IoutIin

NCM

(a) unit circuits

DIF

DIF

PCM

PCM

NCM

V2

V1

x

f(x)

in

in

in

V1 = ∆V, V2 = 2∆V 

∆V = VDD / 4

(b) Rule 90

DIF

DIF

PCM

PCM

NCM

V2

V1

x

f(x)

in

in

in

DIF
V3

V1 = ∆V, V2 = 3∆V, V3 = 5∆V 

∆V = VDD / 6

(c) Rule 150

CLK1 CLK2

CLK3

VF VF

output initial input

Rlarge

R150 
only

xi

xi-1

xi+1

f(x)
x

(d) cell circuit

transfer gates

Figure 4: Circuit implementation of analog CA with rules 90 and 150 function units.
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