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Abstract—We propose a simple retinomorphic neural
network that consists of photoreceptors generating nonuni-
form outputs for common optical inputs with random off-
sets, an ensemble of noisy McCulloch-Pitts neurons each of
which has random threshold values, local synaptic connec-
tions between the photoreceptors and the neurons with vari-
able receptive fields (RFs), output cells, and local synaptic
connections between the neurons and output cells. Through
numerical simulations, we observed stochastic resonance
among the proposed pixels. We calculated correlation val-
ues between the optical inputs and the outputs as a function
of the RF size and intensities of the random components in
photoreceptors and the McCulloch-Pitts neurons, and then
found nonzero optimal RF sizes as well as optimal noise in-
tensities of the neurons under the nonidentical photorecep-
tors. This implies that SR-based night-scope image sensors
with an array of nonidentical photosensors would be devel-
oped with less efforts to implement uniform pixel devices.

1. Introduction

Stochastic resonance (SR) has recently been spotlighted
in the field of electrical engineering, which is motivated by
a wide variety of sensing applications to detect weak sig-
nals [1]. Among the SR applications, night-scope (dark)
image sensing [2] seems to particularly be promising in
semiconductor research fields because present image sen-
sors employ very precise (and thus expensive) devices for
photon sensing or counting. However, SR would be useful
only for detecting dark light in a single photosensor, but
not for canceling mismatches between the photosensors in
the sensor array (image sensor). In this paper, we propose
a retinomorphic neural network utilizing SR to cancel the
pixel mismatches while detecting dark images.

Recently, Funke et al. reported that a visual pathway in a
cat primary visual cortex optimally utilized a SR-like pro-
cess to improve signal detection while preventing spurious
noise-induced activity and keeping the SNR high [3]. Al-
though the mechanism is still unclear, one may assume that
i) SR without optimal tuning of noise intensities [4] un-
derlies the fundamental mechanism and ii) the visual path-
way from photoreceptors to cortical neurons may cause
extremely large receptive field (RF). Under these assump-
tions, we here consider a relatively short pathway, i.e., from
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(b) Correlation values between input and output signals vs
noise intensity

Figure 1: Stochastic resonance (SR) without optimal tun-
ing of noise intensity [4]

photoreceptors to the subsequent layer in vertebrate retinae,
and propose a retinomorphic neural network which has par-
allel SR components with variable RFs.

2. Brief Review of SR Models

Figure 1 shows a basic SR model proposed in [4]. A
subthreshold input is commonly given to N threshold ele-
ments, as illustrated in Fig. 1(a). FitzHuge-Nagumo neu-
rons were used in the original paper, but one may use
McCulloch-Pitts type neurons instead without loss of gen-
erality. Each neuron accepts external uncorrelated noises,
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Figure 2: SR in array of independent pixels

which leads the neurons to fire with high (or low) possi-
bility when the subthreshold input is high (or low). When
the outputs were summed, the uncorrelated noises tend to
be cancelled each other as N increases. Examples with
McCulloch-Pitts type neurons were shown in Fig. 1(b)
where correlations values between the input and output sig-
nals were plotted as a function of the noise intensity. One
can observe that the correlation values are increased as N
increases and the values tend to be insensitive to noise in-
tensity (> 0.2 when N = 100). This means, when a large
number of neurons are used in the system, the subthreshold
(weak) input can be detected without optimal tuning of the
noise intensity [4].

The concept of SR has been expanded to dark-image
sensing applications [2]. Let us consider a 2-D array of
pixels, and assume that each pixel consists of the same SR
model in Fig. 1(a). The array accepts dark (subthreshold)
images, and thus the array’s output would be always zero
when external noises were not given. As the noise intensity
increases, nonzero outputs appeared, as shown in Figs. 2(a)
to (c). When each pixel has random offset values, they
are directly detected through the SR process, as shown in
Figs. 2(d) to (f). Such a random offset is generally observed
in photodiodes as dark currents. Consequently, SR would
be useful for sensing dark images, however, the random
offsets would also be detected in practical systems.

3. Retinomorphic SR Model

We can consider three types of SR networks for night-
scope image sensors from the viewpoint of the practical
hardware implementation. The first structure is illustrated
in Fig. 3(a) where an optical input to a pixel is given to a
single McCulloch-Pitts neuron. Each neuron accepts tem-
poral noises, and the temporal average of the neuron rep-
resents the pixel output. With this setup, correlation values
between the input and the output would be low because the
single pixel exactly corresponds to the network of N = 1 in
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Figure 3: Three types of SR models for possible hardware
implementation

Fig. 1. To increase the correlation value, one can employ
the second structure shown in Fig. 3(b). This setup cer-
tainly increases the correlation values, however, the inte-
gration density would significantly be decreased due to the
large number of threshold components per pixel. Therefore
we propose a superimposed structure aiming at high inte-
gration density while keeping the correlation values high.
Let us consider a 1-D network as shown in Fig. 3(c) where
the optical input distribution is represented by I(x). Output
distribution of photoreceptors are thus defined by I(x)+δ(x)
where δ(x) represents the spatial random noise (pixel vari-
ations) given by m · N(0, 1) [N(0, 1) is the Gaussian noise
with zero mean and unity standard deviation]. Inputs to
neurons via local synaptic connections between photore-
ceptors and neurons were then defined by

R(x) =

∫ (
I(x) + δ(x)

)
· g(x − X) dX, (1)

g(x) =
1√
2πσ

exp
[
− x2

2σ2

]
,

where σ represents the RF size. Output distribution of the
neurons is thus

V(x) = H
(
R(x) − ξ(t)

)
, (2)
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Figure 4: Simulation results of proposed 1-D network for step optical inputs
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Figure 5: Horizontal cross sections of Fig. 4(b).

where H(·) represents a step function, and ξ(t) the temporal
random noise given by A·N(0, 1)+θ (A: standard deviation,
θ: mean threshold). The final output via local synaptic con-
nections between the neurons and output cells is then given
by

O(x) =
∫

V(x) · g(x − X) dX. (3)

With this model, we examine SR behaviors by changing
m (spatial randomness), σ (RF size), and A (temporal ran-
domness being necessary for SR).

4. Results

In the following simulations, we assume θ = 0.5 and
I(x) = H(x). Figure 4 (top) shows density plots of correla-
tion values between the optical input I(x) and final output
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Figure 6: Vertical cross sections of Fig. 4(b).

O(x) as a function of σ and A with four different values of
ms. Figure 4 (bottom) shows distributions of I(x), O(x),
and random threshold ξ(t) at arbitrary t. If photoreceptors
are identical (m = 0, Fig. 4(a)), the maximum correla-
tion value was obtained when the RF size (σ) was zero,
as expected. However, if photoreceptors are not identi-
cal (m = 0.1, Fig. 4(b)), the correlation peak was moved
to nonzero σ while keeping the peak value high. This is
unexpected and surprising result implying that a nonzero
RF size would be necessary for SR among nonidentical
components. As m increases (Fig. 4(c) and (d)), the peak
shifted to higher σ, however, the peak values were decayed
slowly.

Figure 5 shows horizontal cross sections of Fig. 4(b). As
in the basic SR network (Fig. 1), the correlation values had
a peak for variable noise intensity (A). It should be no-
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Figure 7: Maximum correlation values vs spatial variance

ticed that the correlation values did not decrease suddenly
as noise intensity A increased. When σ = 1.5, for example,
the peak value was almost insensitive within 0.2 < A < 0.5.
Since σ qualitatively represents the number of neurons in
the RF of each pixel, increasing σ may improve the cor-
relation as in the basic SR network. However, nonzero
σ causes smoothing of the optical input. Therefore there
may exist upper bounds of σ. Figure 6 shows the vertical
cross sections of Fig. 4(b) representing correlation values
as a function of σ. The peak value was obtained around
σ ≈ 1.5 and A = 0.4, which proves that nonzero σ (RF
size) is necessary for obtaining higher correlation values in
this SR system with nonidentical pixels (m > 0).

To prove the effects of RFs in our SR model to improve
the SNR, we calculated peak correlation values in compar-
ison with just a smoothing model that has the same struc-
ture as Fig. 3(c) assuming zero RF size between V(x) and
O(x) layers. Figure 7 plots the peak values as a function
of spatial variance m. In this case, I(t) was set to 0.2 when
t > 0 and 0 when t ≤ 0. For given m, the peak values were
scanned by sweeping two parameters A (noise intensity)
and σ (RF size). The correlation values of the proposed
model was always larger than that of the smoothing model,
and the difference slightly decreased as m increased.

Finally, we evaluated performances of a 2-D network
with two distinct RF sizes (σ = 0.3, 1.5). Figure 8 show
the results (A = 0.4, m = 0.1, and θ = 0.5). Binary input
image I(x, y) is shown in Fig. 8(a), whereas density plots
of outputs of neurons V(x, y) [(b) and (c)] and final output
cells O(x, y) [(d) and (e)] with different RF sizes are shown.
By comparing the final outputs of small RF (σ = 0.3) and
relatively large RF (σ = 1.5), we conclude that expand-
ing RF sizes are useful for obtaining visually-better output
image through SR among nonidentical pixels. The impor-
tant thing here is that the underlying mechanism of the per-
formance increase mainly resulted from SR without tuning
rather than just any image smoothing, as proved in Fig. 7.
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Figure 8: 2-D simulation results

5. Summary

We proposed a simple retinomorphic neural network
consisting of nonidentical photoreceptors towards the de-
velopment of high-density night-scope image sensor sys-
tems. Through numerical simulations, we observed a new
class of stochastic resonance among the nonidentical pix-
els. We calculated correlation values between the opti-
cal inputs and the output as a function of the receptive-
field (RF) size and intensities of the random components in
photoreceptors and the McCulloch-Pitts neurons, and then
found nonzero optimal sizes of the RF as well as optimal
noise intensities of the neurons under the nonidentical pho-
toreceptors.
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