
Analog CMOS Circuits Implementing Neural
Segmentation Model Based on Symmetric STDP

Learning

Gessyca Maria Tovar1, Eric Shun Fukuda2, Tetsuya Asai1, Tetsuya Hirose1,
and Yoshihito Amemiya1

1 Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, 060-0814 Japan
gessyca@sapiens-ei.eng.hokudai.ac.jp,
http://sapiens-ei.eng.hokudai.ac.jp/

2 Tokyo University, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8561, Japan

Abstract. We proposed a neural segmentation model that is suitable
for implementation in analog VLSIs using conventional CMOS technol-
ogy. The model consists of neural oscillators mutually couple through
synaptic connections. The model performs segmentation in temporal do-
main, which is equivalent to segmentation according to the spike timing
difference of each neuron. Thus, the learning is governed by symmetric
spike-timing dependent plasticity (STDP). We numerically demonstrate
basic operations of the proposed model as well as fundamental circuit
operations using a simulation program with integrated circuit emphasis
(SPICE).

1 Introduction

The human brain has the ability to group elements from multiple sensory sources.
Synchronous activity has been observed in many parts of the brain, e.g., in the
visual and auditory cortex. These discoveries have triggered much interest in
exploring oscillatory correlation to solve the problems of neural segmentation.
Many neural models that perform segmentation have been proposed, e.g., [1,2,3],
but they are often difficult to implement on practical integrated circuits. A neural
segmentation model called LEGION (Locally Excitatory Globally Inhibitory Os-
cillator Networks) [4], can be implemented on LSI circuits [5]. However, the LE-
GION model fails to work in the presence of noise. Our model solves this problem
by including spike-timing dependent plasticity (STDP) learning with all-to-all
connections of neurons.

In this paper, we present a simple neural segmentation model that is suitable
for analog CMOS circuits. The segmentation model is suitable for applications
such as figure-ground segmentation and the cocktail-party effect, etc.

The model consists of mutually coupled (all-to-all) neural oscillators that ex-
hibit synchronous (or asynchronous) oscillations. All the neurons are coupled
with each other through positive or negative synaptic connections. Each neuron
accepts external inputs, e.g., sound inputs in the frequency domain, and oscil-
lates (or does not oscillate) when the input amplitude is higher (or lower) than a
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Fig. 1. Network construction of segmentation model

given threshold value. The basic idea is to strengthen (or weaken) the synaptic
weights between synchronous (or asynchronous) neurons, which may result in
phase-domain segmentation. The synaptic weights are updated based on sym-
metric STDP using Reichardt’s correlation neural network [6] which is suitable
for analog CMOS implementation.

2 The Model and Basic Operations

Our segmentation model is illustrated in Fig. 1. The network has N neural
oscillators consisting of the Wilson-Cowan type activator and inhibitor pairs
(ui and vi) [7]. All the oscillators are coupled with each other through resistive
synaptic connections, as illustrated in the figure. The dynamics are defined by

τ
dui

dt
= −ui + fβ1(ui − vi) +

N∑

j �=i

W uu
ij uj, (1)

dvi

dt
= −vi + fβ2(ui − θi) +

N∑

j �=i

W uv
ij uj , (2)

where τ represents the time constant, N the number of oscillators, θi the external
input to the i-th oscillator. fβi(x) represents the sigmoid function defined by
fβi(x) = [1 + tanh(βix)]/2, W uu

ij the connection strength between the i-th and
j-th activators and W uv

ij the strength between the i-th activator, and the j-
th inhibitor. The operation of the model and the simulations of nullclines and
trajectory are explained in [8].

According to the stability analysis in [7], the i-th oscillator exhibits excitable
behaviors when θi < Θ where τ � 1 and β1 = β2 (≡ β), where Θ is given by

Θ = u0 − 2
β

tanh−1(2v0 − 1), (3)
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Fig. 2. Reichardt’s correlation network

Fig. 3. Learning characteristic: Reichardt’s correlation

u0 ≡ 1 −
√

1 − 4/β

2
,

v0 ≡ u0 − 2
β

tanh−1(2u0 − 1),

and exhibits oscillatory behaviors when θi ≥ Θ, if W uu
ij and W uv

ij for all i and j
are zero.

Suppose that neurons are oscillating (θi ≥ Θ for all i) with different initial
phases. The easiest way to segment these neurons is to connect the activators
belonging to the same (or different) group with positive (or negative) synaptic
weights. In practical hardware, however, the corresponding neuron devices have
to be connected by special devices having both positive and negative resistive
properties, which prevents us from designing practical analog circuits. There-
fore, we simply use positive synaptic weights between activators and inhibitors,
and do not use negative weights. When the weight between the i-th and j-th
activators (W uu

ij ) is positive and W uv
ij is zero, the i-th and j-th activators will

be synchronized. Contrarily, when the weight between the i-th activator and the
j-th inhibitor (W uv

ij ) is positive and W uu
ij is zero, the i-th and j-th activators
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will exhibit asynchronous oscillation because the j-th inhibitor (synchronous to
the i-th activator) inhibits the j-th activator.

The synaptic weights (W uu
ij and W uv

ij ) are updated based on our assumption;
one neural segment is represented by synchronous neurons, and is asynchronous
with respect to neurons in the other segment. In other words, neurons should be
correlated (or anti-correlated) if they received synchronous (or asynchronous)
inputs. These correlation values can easily be calculated by using Reichardt’s
correlation neural network [6] which is suitable for analog circuit implementation
[9]. The basic unit is illustrated in Fig. 2(a). It consists of a delay neuron (D)
and a correlator (C). A delay neuron produces blurred (delayed) output Dout
from spikes produced by activator u1. The dynamics are given by

d1
dDout

dt
= −Dout + u1, (4)

where d1 represents the time constant. The correlator accepts Dout and spikes
produced by activator u2 and outputs Cout = Dout × u2. The conceptual oper-
ation is illustrated in Fig. 2(b). Note that Cout qualitatively represents correla-
tion values between activators u1 and u2 because Cout is decreased (or increased)
when Δt, inter-spike intervals of the activators, is increased (or decreased). Since
this basic unit can calculate correlation values only for positive Δt, we use two
basic units, which we call a unit pair, as shown by thick lines in Fig. 3(a). The
output (U) is thus obtained for both positive and negative Δt by summing the
two Couts. Through temporal integration of U , we obtain impulse responses of
this unit pair. The sharpness is increases as d1 → 0. Introducing two unit pairs
with different time constants, i.e., d1 and d2 (� d1), one can obtain those two
impulse responses (U and V ) simultaneously. The impulse responses (U and
V ) are plotted in Fig. 3(b) by a dashed and a dotted line, respectively. The
weighted subtraction (U − αV ) produces well-known Mexican hat characteris-
tics, as shown in Fig. 3(b) by a solid line. We use this symmetric characteristic
for the weight updating as a spike-timing dependent plasticity (STDP) in the
oscillator network.

Our learning model is shown in Fig. 4(a). The learning circuit is located
between two activators u1 and u2. The two outputs (U and V ) of the learning
circuit are given to interneuron W which performs subtraction U−αV . According
to our above assumptions for neural segmentation, when U − αV is positive,
the weight between activators u1 and u2 (illustrated by a horizontal resistor
symbol in Fig. 4(a)) is increased because the activators should be correlated.
On the other hand, when U − αV is negative, the weight between activator u1
and inhibitor v2 (illustrated by a slant resistor symbol in Fig. 4(a)) is increased
because activators u1 and u2 should be anti-correlated. To this end, the output of
interneuron W is given to two additional interneurons (fuu and fuv). The input-
output characteristics of these interneurons are shown in Figs. 4(b). Namely, fuu
(or fuv) increases linearly when positive (or negative) U − αV increases, but is
zero when U −αV is negative (or positive). Those positive outputs (fuu and fuv)
are given to the weight circuit to modify the positive resistances. The dynamics
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Fig. 4. STDP learning Model

of the “positive” weight between activators ui and uj is given by

dW uu
ij

dt
= −W uu

ij + fuu, (5)

and the “positive” weight between activator ui and inhibitor vj is

dW uv
ij

dt
= −W uv

ij + fuv. (6)

We carried out numerical simulations with N = 6, τ = 0.1, β1 = 5, β2 = 10,
d1 = 2, d2 = 0.1 and α = 1.2. Time courses of activators ui (i = 1 ∼ 6)
are shown in Fig. 5. Initially, the external inputs θi (i = 1 ∼ 6) were zero
(< Θ), but θi for i = 1 ∼ 3 and i = 4 ∼ 6 were increased to 0.5 (> Θ) at
t = 10 s and 20.9 s, respectively. We observed that u1∼3 and u4∼6 were gradually
desynchronized without breaking synchronization amongst neurons in the same
group, which indicated that segmentation of neurons based on the input timing
was successfully achieved.

3 CMOS Unit Circuits and Operations

The construction of a single neural oscillator is illustrated in Fig. 6. The oscil-
lator consists of two differential pairs (m3-m4 and m8-m9), two current mirrors
(m1-m2 and m6-m7), bias transistors (m5 and m10); and two additional capac-
itors (C1 and C2). To explain the basic operation of the neural oscillator, let us
suppose that Wuu and Wuv in Eqs. (1) and (2) are zero. Now in Eq. (1), when
u is larger than v (u > v) u tends to increase and approach to 1 (vdd), on the
contrary, when u is lower than v (u < v) u tends to decrease and approach to
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Fig. 5. Numerical simulation results
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Fig. 6. Unit circuits for neural segmentation

0 (gnd). The same analysis can be apply to Eq. (2). When u is larger than θ
(u > θ) v tends to increase approaching to (vdd), and, when u is lower than θ
(u < θ) v tends to decrease and approaching to (gnd).

The nullclines (steady state voltage) of a single neuron circuit were simulated
in [8]. Transient simulation results of the neuron circuit are shown in Fig. 7. The
parameter used for the transistors were obtained from MOSIS AMIS 1.5-μm
CMOS process. All transistor sizes were fixed at L = 1.6 μm and W = 4 μm,
the capacitors (C1 and C2) were set at 0.1 pF, and the differential amplifier’s
Vref was set at 0.7 V, and the supply voltage was set at 5 V. Time courses of
the activator unit (u) and (v) are shown. Initially, θ was set at 0.5 V (in relaxing
state), and neither u nor v oscillated, instead u they are in equilibrium. Then θ
was increased to 2.5 V at t = 5 μs, and both u and v exhibited oscillations with
small phase difference between them. Again, θ was set at 0.5 V at t = 10 μs and
u relaxed, and v to a high value (around Vdd) and decreases with time until it
reach equilibrium, as expected.
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Fig. 7. Simulation results of neural oscillator

A circuit implementing Reichardt’s basic unit shown in Fig. 2(a) is shown in
Fig. 8. Bias current I1 drives m6. Transistor m5 is thus biased to generate I1 be-
cause m5 and m6 share the gates. When m3 is turned on (or off) by applying Vdd
(or 0) to u1, I1 is (or is not) copied to m1. Transistors m1 and m2 form a current
mirror, whereas m2 and m4 form a pMOS source-common amplifier whose gain
is increased as Vb1 → 0. Since the parasitic capacitance between the source and
drain of m2 is significantly amplified by this amplifier, temporal changes of u1
are blurred on the amplifier’s output (Dout). Therefore this “delayer” acts as a
delay neuron in Fig. 2(a). A correlator circuit consists of three differential am-
plifiers (m12-m13, m14-m15 and m16-m17), a pMOS current mirror (m19-m20),
a bias transistor (m18) and a bias current source (I2). In this circuit, m12, m14
and m17 are floating gate transistors. They reduce voltages of Dout and u2 to
Dout/10 and u2/10 because the input gate sizes were designed to ’capacitively’
split the input voltages with the ratio of 1:10. The output current of differential
pair m14-m15 is:

Iout = I2f(Dout/10)f(u2/10), (7)

where f(x) is the sigmoid function given by f(x) = 1/(1 + e−x). Current Iout is
regulated by the bias transistor m18. The result is copied to m20 through current
mirror m19-m20. This operation corresponds to that of a correlator in Fig. 2(a).

We carried out circuit simulations of the above circuits. The parameter sets
we used for the transistors were obtained from MOSIS AMIS 1.5-μm CMOS
process. Transistor sizes of all nMOS and pMOS m9, m10 and m18 were fixed at
L = 1.6 μm and W = 4 μm pMOS transistors m1, m2, m19 and m20 were fixed
at L = 16 μm and W = 4 μm. The supply voltage was set at 5 V.

Simulation results of our STDP circuits are shown in Fig. 9. Parameters Vb1,
Vb2 and Vb3 were set at 0.41 V, 0.7 V and 4.1 V, respectively. The value of
Vb1 was chosen so that the delayer makes a reasonable delay. Horizontal axes
(Δt) in Fig. 9 represent time intervals of input current pulses (spikes). Voltage
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Fig. 9. STDP characteristics

pulses (amplitude: 5 V, pulse width: 10 ms) were applied as u1 and u2 in Fig. 8.
We integrated Cout during the simulation and plotted normalized values [(a) in
Fig. 9]. Then we changed the value of Vb1 to 0.37 V. The lowered Vb1 reduced
the drain current of m4 and made the delay larger. Again, Cout was integrated
and normalized. The result is plotted [(b) in Fig. 9]. By subtracting (b) from
tripled (a), we obtained the STDP learning characteristic (c) in Fig. 9.

Simulations for testing the synaptic weights of two coupled neural oscillators
were made. Figure 10(a) shows the two oscillators with all the synaptic con-
nections. The oscillation of neurons u1 and u2 without applying any connection
between them (Vgs=0 V for Wuu and Wuv) are shown in Fig. 10(b) where the
neurons oscillated independently. nMOS transistors with L = 1.6 μm and W = 4
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Fig. 11. Oscillation of neurons u1 and u2 when (a)excitation is applied and (b) inhi-
bition is applied

μm were used as synaptic weight Wuu and Wuv, Fig. 10(a) shows the excitatory
connection Wuu between neurons u1 and u2, and inhibitory connections Wuv

between neurons u1,2 and v2,1. The oscillations of neurons u1 and u2 when ap-
plying an excitation through Wuu (the gate voltage of Wuu was set at 1 V and
0 V for Wuv) are shown in Fig. 11(a), in this case both neurons synchronized.
On the contrary, when applying an inhibition through Wuv (the gate voltage of
Wuv was set at 0.6 V and 0 V for Wuu) the neurons oscillated asynchronously
as shown in Fig. 11(b).

4 Conclusion

In this paper, we proposed a neural segmentation model that is suitable for
analog VLSIs using conventional CMOS technology. In order to facilitate the
implementation of the model, instead of employing negative connections re-
quired for anti-correlated oscillation among different segments, we introduced
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positive connections between activators and inhibitors among different neuron
units. Moreover, we proposed a novel segmentation method based on a symmet-
ric spike-timing dependent plasticity (STDP). The STDP characteristics were
produced by combining Reichard’s correlation neural networks because they are
suitable for analog CMOS implementation. We demonstrated the operation of
the segmentation network through numerical simulations. In addition we pro-
posed and evaluated basic circuits for constructing segmentation hardware. We
showed that the circuit could produce symmetric STDP characteristics. Finally,
we confirmed operations of synchronization or desynchronization of two neu-
ron circuits by connecting them with standard synaptic circuits (single MOS
transistors). Our next target is to set up the entire segmentation network.
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