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Abstract. We previously proposed a neural segmentation model suit-
able for implementation with complementary metal-oxide-semiconductor
(CMOS) circuits. The model consists of neural oscillators mutually cou-
pled through synaptic connections. The learning is governed by a sym-
metric spike-timing-dependent plasticity (STDP). Here we demonstrate
and evaluate the circuit operation of the proposed model with a network
consisting of six oscillators. Moreover, we explore the effects of mismatch
in the threshold voltage of transistors, and demonstrate that the network
was tolerant to mismatch (noise).
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1 Introduction

One of the most challenging problems in sensory information processing is the
analysis and understanding of natural scenes, i.e., images, sounds, etc. These
scenes can be decomposed into coherent ”segments”. The segments correspond
to different components of the scene. Although this ability, generally known as
sensory segmentation, is performed by the brain with apparent ease, the problem
remains unsolved. Several models that perform segmentation have been proposed
[1]-[3], but they are often difficult to implement in practical integrated circuits.
In [4] we proposed a simple neural segmentation model that is suitable for analog
CMOS circuits. The model consisted of mutually-coupled neural oscillators. The
oscillators were coupled with each other through positive or negative synaptic
connections.

In this paper, we demonstrate and evaluate the circuit operation of the pro-
posed model with a network consisting of six oscillators. Moreover, we conduct
Monte-Carlo simulations to study the effects of threshold mismatch among tran-
sistors in our network using three oscillators, and we demonstrate that the net-
work is tolerant to the mismatch (noise).
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Fig. 1. a) network construction of segmentation model, and b) learning circuit model.

2 The model

Our segmentation model is shown in Fig. 1(a). The network has N Wilson-
Cowan type neural oscillators (ui output of i-th activator and vi output of i-th
inhibitor). The oscillators are coupled with each other through resistive synaptic
connections. The dynamics are defined by

τ
dui

dt
= −ui + fβ1(ui − vi) +

N∑
j 6=i

W uu
ij uj , (1)

dvi

dt
= −vi + fβ2(ui − θi) +

N∑
j 6=i

W uv
ij uj , (2)

where τ represents the time constant, N is the number of oscillators, θi is the
external input to the i-th oscillator, and fβi(x) is the sigmoid function defined
by fβi(x) = [1 + tanh(βix)]/2. Also, W uu

ij represents the connection strength
between the i-th activator and j-th activator, and W uv

ij the strength between
the i-th activator and the j-th inhibitor. Each neuron accepts external inputs,
e.g., sound inputs, and oscillates (or does not oscillate) when the input amplitude
is higher (or lower) that a given threshold. For a more detailed explanation, refer
to [4].

The easiest way to segment neurons is to connect the activators belonging
to the same (or different) group with positive (or negative) synaptic weights.
However, circuits that implement positive and negative weights may occupy a
large area on analog LSIs, which prevents us from implementing large-scale net-
works. Therefore, instead of using negative weights, we used positive synaptic
weights between the activator and inhibitors [4]. These weights are updated by
learning circuits. As shown in Fig 1(a), the learning circuits (LCs) are located
between two activators. Each of them consists of a correlation circuit and an
interneuron circuit (see Fig. 1(b)). Therefore, let us start with the explana-
tion of the correlation circuit. In our model, neurons should be correlated (or
anti-correlated) if they receive synchronous (or asynchronous) inputs. Based on
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Fig. 2. a) basic unit of Reichardt’s correlation network, b) Reicherdt’s network op-
eration, c) unit pair, d) correlation circuit, e) model of interneuron circuit, and f)
input-output characteristics of piecewise linear functions (fuu and fuv).

this assumption, the synaptic weights are updated on the basis of symmetric
spike-timing-dependent plasticity (STDP) using Reichardt’s correlation neural
network [5]. The basic unit is illustrated in Fig. 2(a). It consists of a delay
neuron (D) and a correlator (C). The delay neuron produces blurred (delayed)
output Dout from spikes produced by activator (ui). The dynamics are given
by τd1dDout/dt = −Dout + ui, where τd1 represents the delay time constant.
The correlator accepts Dout and spikes produced by activator (uj), and outputs
Cout (≡ Dout × uj). The operation is illustrated in Fig. 2(b). Since this basic
unit can calculate correlation values only for positive inter-spike intervals ∆t, we
used a unit pair consisting of two basic units, as shown in Fig. 2(c). The out-
put (U) is obtained by summing the two Couts. Through temporal integration
of U , we obtained a Gaussian-type response for ∆t [4]. The sharpness of this
response increased as τd1 →0, so introducing two unit pairs with different time
constants, e.g., τd1 and τd2 (τd1 ¿ τd2), we obtained two responses for U and V
with different sharpness. Then, the weighted subtraction (U −αV ) produced the
well-known Mexican-hat characteristic that we used as STDP in the oscillator
network [4]. The correlation circuit is shown in Fig. 2(d).

The two outputs (U and V ) of the correlation circuits are given to the in-
terneuron circuit shown in Fig. 2(e). Interneuron W receives outputs of the
correlation circuit (U and V ), and performs the weighted subtraction (U −αV ).
When U−αV is positive, neurons ui and uj in Fig. 2(d) should be correlated, and
the weight between activators (W uu

ij ) should be increased. On the other hand,
when U −αV is negative, the neurons should be anti-correlated, and the weight
between the activator and inhibitor (W uv

ij ) should be increased. The output of
interneuron W is given to two additional interneurons (fuu and fuv). The input-
output characteristics of these interneurons are shown in Fig. 2(f). The outputs
of these interneurons are given to the weight circuit (represented by resistors
in the model; Fig. 1(a)) in order to modify the positive resistances. For a more
detailed explanation and simulation of the model refer to [4].
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Fig. 3. simulation results showing segmentation ability of the network

We newly carried out numerical simulations to evaluate the ”segmentation
ability,” which represents the number of survived segments after the learning.
The number of segments as a result of the network’s learning strongly depends
on the STDP characteristic as well as the input timing of neurons (∆t). Let us
remember that neurons that fire ”simultaneously” should be correlated. ”Simul-
taneously” is to be defined by some ”time windows of coincidence” that we call
σSTDP. Thus, neurons that receive inputs within the time windows should be
correlated. Simulation results are shown in Fig. 3. The number of neurons (N)
was set to 50. The neurons received random inputs within time tmax

in (maximum
input timing). We observed that when σSTDP was 1 and neurons received their
inputs within time 2, the number of segments was about 2. The contrary was
observed when σSTDP was 0.1 and tmax

in was 10, where the number of segments
was about 35.

3 CMOS circuits

Construction of a single neural oscillator is shown in Fig. 4(a). The oscillator
consists of two standard differential amplifiers (a differential pair and a current
mirror) and two additional capacitors C1 and C2. A circuit implementing Re-
ichardt’s basic unit (see Fig. 2(a)) is shown in Fig. 4(b). The circuit has a delayer
and a correlator. The delayer consists of a bias current source (I1), current mir-
rors (m1-m2 and m5-m6) and a pMOS source-common amplifier (m2-m4). The
correlator consists of three differential pairs (m12-m13, m14-m15 and m16-m17),
a pMOS current mirror (m19-m20), a bias transistor (m18) and a bias current
source (I2). We employed floating gate MOS FETs for m12, m14 and m17 to
decrease the gain of the differential pairs. Detailed operations and simulation
results of these two circuits are explained in [6].
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Fig. 4. a) neural oscillator circuit [6], and b) Reichardt’s basic unit circuit [6]
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A basic circuit implementing the interneurons (W , fuu and fuv) is shown
in Fig. 5. The circuit consists only of current mirrors. Input current U (from
Reichardt’s circuit; correlation circuit) is copied to m3 by current mirror m1-m3,
and is copied to m8 by current mirrors m1-m2 and m7-m8. At the same time,
input current V is copied to m6 by current mirror m4-m6, and is copied to m12

by current mirrors m4-m5 and m11-m12. Recall that we need the subtraction of
U −αV to produce the Mexican-hat characteristic. Therefore, we set the weight
(α) as α ≡ W5/L5 · L4/W4 = W6/L6 · L4/W4, where Wi and Li represent the
channel width and length of transistor mi , respectively. So, when current U is
higher than current αV , current fuu is outputted by current mirror m13-m14.
Otherwise, current fuv is outputted by current mirror m11-m12.
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Fig. 6. circuit simulation results of interneuron circuit
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Fig. 7. circuit simulation results for a) inter-spike interval ∆t = 0, and b) ∆t = 3 µs.

4 Simulation results

First we carried out circuit simulations for the interneuron circuit. The param-
eters used for the transistors were obtained from MOSIS AMIS 1.5-µm CMOS
process. Transistors sizes (W/L) were 4 µm/1.6 µm for m1-m4, 10 µm/1.6 µm
for m5 and m6, 4.5 µm/16 µm for m8 and m12, 3.5 µm/16 µm for m13, and 4
µm/16 µm for the rest transistors. The supply voltage was set to 5 V. Input
current V was set to 100 nA, and input current U varied from 0 to 200 nA. The
simulation results are shown in Fig. 6. When U + ∆I < V where ∆I ≈ 20 nA,
output current fuv flowed and fuu was 0. When U − V < ∆I, both fuu and fuv

were 0. When hen U − ∆I > V , fuu flowed while fuv remained at 0.
Next, we carried out circuit simulations of the circuit network with N = 6.

Transistor sizes (W/L) for the Recichardt’s basic circuit (see Fig. 4(b)) were 4
µm/1.6 µm for nMOS transistors and m20, and 4 µm/16 µm for the rest of the
transistors. Voltages Vb2 and Vb3 were set to 550 mV and 4.08 V respectively,
while Vb1 was set to 510 mV for delay τd1, and was set to 430 mV for delay τd2.
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Fig. 8. correlation values between neurons u1 and u2 for different σVT.
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Fig. 9. correlation values between neurons u1 and u3 for different σVT.

With these settings, we obtained positive W (U −αV ; see Fig. 2(e)) for |∆t| ≤ 1
µs, and obtained negative W for |∆t| > 1 µs. In other words, when |∆t| ≤ 1
µs, neurons should be correlated, otherwise, they should be anti-correlated, as
explained before.

The normalized time courses of uis (i = 1 ∼ 6) are shown in Figs. 7(a) and
(b). As shown in Fig. 7(a), at t = 0, external inputs θi (i = 1 ∼ 6) were 2.5
V, which is equivalent to ∆t=0. We observed that all neurons were gradually
synchronized. On the contrary, Fig. 7(b) shows that at t = 0 external inputs
θ1,2,3 were set to 2.5 V, and inputs θ4,5,6 were set to 0. Then, at t = 3 µs
θ4,5,6 were set to 2.5 V, which is equivalent to ∆t = 3 µs. We observed that
u1,2,3 and u4,5,6 were desynchronized without breaking synchronization among
neurons in the same group that were gradually synchronized. This indicated that
segmentation of neurons based on the input timing was successfully achieved.

To consider the noise tolerance of the network, we carried out Monte-Carlo
simulations in our circuit network with N = 3. The parameter Vth (threshold
voltage) of all transistors was varied using Gaussian noises with standard de-
viation σVT. When t = 0, external inputs to neurons (θ1, θ2, θ3) were set to
(2.5,0,0)V. Then, at t = 1 µs, (θ1, θ2, θ3) were set to (2.5,2.5,0)V, whereas they
were set to (2.5,2.5,2.5)V at t = 2.4 µs. In other words, neurons u1 and u2 should
be synchronous with each other, and they should be asynchronous with u3 be-
cause of ∆t=1.4 µs. To evaluate the performance of the network, we calculated
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correlation values Cij between neurons ui and uj given by

Cij =
〈uiuj〉 − 〈ui〉〈uj〉√

〈u2
i 〉 − 〈ui〉2

√
〈u2

j〉 − 〈uj〉2
. (3)

We calculated C12 and C13 to evaluate the synchronicity between segments.
Figures 8 and 9 show the simulation results. As observed in the figures, when
σVT <10 mV neurons u1 and u2 were correlated, while the correlation value
(C13) between neurons u1 and u3 was low, i.e., they were anti-correlated. Due to
imperfections of the CMOS fabrication process, device parameters, e.g., thresh-
old voltage, etc., suffer large variations [7]. These variations among transistors
cause a significant change in general analog circuits. Nevertheless, the results
obtained in Figs. 8 and 9 showed that our network successfully segmented neu-
rons for σVTs lower than 10 mV, which indicated that the network is tolerant
to threshold mismatch among transistors.

5 Conclusion

Previously, we proposed a neural segmentation model that is suitable for analog
VLSIs using conventional CMOS technology. We proposed a novel segmenta-
tion method based on a symmetric spike-timing dependent plasticity (STDP)
using Reichard’s correlation neural networks. In this paper, we evaluated the
segmentation ability of the network through numerical simulations. In addition
we proposed and evaluated basic circuits for constructing segmentation hard-
ware. We demonstrated the operation of the circuit network using six neurons.
Finally, we explored the effect of threshold mismatches among transistors in our
network with three oscillators, and showed that the network was tolerant to
device mismatches.

References

1. Han, S. K., Kim, W. S., Kook, H.: Temporal segmentation of the stochastic oscillator
neural network. Physical Review E. 58, 2325–2334 (1998)

2. Von der Malsburg, C., Schneider, W.: A neural cocktail-party processor. Biological
Cybernetics. 54, 29–40 (1986)

3. Wang D. L., Terman, D.: Locally excitatory globally inhibitory oscillator networks.
IEEE Trans. on Neural Networks. 6(1), 283–286 (1995)

4. Fukuda, E. S., Tovar, G. M., Asai, T., Hirose, T., Amemiya, Y.: Neuromorphic
CMOS Circuits Implementing a Novel Neural Segmentation Model Based on Sym-
metric STDP Learning. J. Signal. Procc. 11(6), 439–444 (2007)

5. Reichardt, W.: Principles of Sensory Communication. Wiley, New York (1961)
6. Tovar, G. M., Fukuda, E. S., Asai, T., Hirose, T., Amemiya, Y.: Analog CMOS

Circuits Implementing Neural Segmentation Model Based on Symmetric STDP
Learning. In: 14th International conference on Neural information Processing, pp.
306–315. Japan (2007)

7. Pelgrom, M. J. M., Duinmaijer, A. C. J., Welbers, A. P. G.: Matching Properties of
MOS Transistors. J. Solid-State Circuits. 24(5), 1433–1440 (1989)


