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Abstract. This paper discusses the implications of noises in a pulse-
density modulation single-electron circuit based on Vestibulo-ocular Re-
flex model. The proposed circuit consists of an ensemble of single-electron
integrate-and-fire neurons that encode the input voltage into pulses whose
temporal density is proportional to the amplitude of the input. We con-
firmed that static noises (heterogeneity in circuit parameters) and dy-
namic noises (random firing) introduced into the network indeed played
an important role in improving the fidelity with which the neurons could
encode signals with input frequencies higher than the intrinsic response
frequencies of single neurons or a network of neurons without noises.
Through Monte-Carlo based computer simulations, we demonstrated
that noises could enhance the fidelity with which the network could cor-
rectly encode signals with high input frequencies: a noisy network could
operate over a wider input range that a single neuron or a network of
homogeneous neurons.
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1 Introduction

As physical features of electronic devices approach the deep sub-micron (nano)
scales, variance in physical parameters of fabricated devices (static noises) and
sensitivity to external noises (dynamic noises) become more pronounced, posing
a challenging task to the circuit designer. Most of the research toward solving
these problems has been focused on reducing the impact of static noises through
improved fabrication techniques, improving shielding technologies to protect de-
vices from radiation and extrenal noises, or architectural level approaches where
additional circuitry is introduced into the system to increase the signal to noise
ratio. The above-mentioned approaches might not provide the once-and-future
? corresponding author



2 Noise-driven LSI architectures

solution, especially for the constantly shrinking device sizes. A novel approach to
solving this problem would be to effectively use both static and dynamic noises
to improve circuit performance.

If we look at how signal processing is carried out in neuronal systems, we
find that individual neurons have high heterogeneity in intrinsic response prop-
erties; they have diverse variances in firing rates, and some of the neurons are
even defective. However, in spite of these setbacks neuronal systems accurately
encode signals as they are relayed from sensory organs to the central nervous
system, or to other organs. A number of reports suggest that neurons in fact em-
ploy heterogeneity to effectively encode signals ([1] - [3]). Hospedales et al. ([1])
demonstrated that neurons in the medial vestibular nucleus (MVN) can encode
high frequency signals with a high temporal precision as a result of their het-
erogeneity. This paper introduces a neuromorphic circuit that effectively utilizes
both static and dynamic noises to improve the temporal fidelity of signal trans-
mission in a pulse density modulation circuit based on Vestibulo-ocular Reflex
(VOR) model.

The paper is organised as follows. A short review of pulse-density modulation
in integrate-and-fire neurons is presented. This is folowed by the noisy network
model and its circuit implementation with single-electron devices. Thirdly, the
model and circuit configuration are explained. Finally the validity of the model
is verified with Monte-Carlo based simulations.

2 Pulse-density modulation in integrate-and-fire neurons
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Fig. 1. A:(a) Pulse density modulation in integrate-and-fire neurons: analog input is
converted into a pulse train (b) Fundamental structure and operation of integrate-and-
fire neurons (IFNs). The IFN receives input voltages through excitatory and inhibitory
synapses, and produces a pulse train whose pulse density (firing rate) is proportional to
the net input voltage. B: Single-electron tunneling (SET) oscillator: (a) circuit structure
and (b) waveform showing oscillation.

An integrate-and-fire neuron (IFN) aggregates inputs from other neurons
connected through synapses. The aggregated charge raises the membrane poten-
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tial until it reaches a threshold, where the neuron fires generating a spike. This
spike corresponds to a binary output“1”. After the firing event, the membrane
potential is reset to a low value, and it increases again as the neuron accepts
inputs from neighboring neurons (or input signals) to repeat the same cycle; pro-
ducing a stream of“ one”and“ zero”pulse trains. The spike interval (density
of spikes per unit time) is proportional to the analog input voltage i.e. the level
of analog input is coded into pulse density. Thus a neuron can be considered
as a 1-bit A-D converter operating in the temporal domain. Fig. 1A:(a) shows
a schematic representation of analog-to-digital conversion in IFNs. The output
pulse density is proportional to the amplitude of the input signal. Fig. 1A:(b)
shows the fundamental operation of an IFN. The open circles (◦) and shaded
circles (•) represent excitatory and inhibitory synapses, respectively. The IFN
receives input signals (voltages) through the excitatory synapses (to raise its
membrane potential) and inhibitory synapses (which decrease the membrane
potential) from adjacent neurons, to produce a spike if the postsynaptic po-
tential (

∑
V ex

i −∑
V in

j ) exceeds the threshold voltage. After the IFN fires, its
membrane voltage is reset to a low value, and the integration action resumes.

3 Single-electron Integrate and Fire Neuron

The operation of an integrate-and-fire neuron (IFN) is modelled with a single-
electron oscillator [4] - [5]. A single-electron oscillator (Fig. 1B:(a)) consists of
a tunneling junction (capacitance = Cj) and a high resistance R connected in
series at the nanodot (•) and biased with a positive or a negative voltage Vd. It
produces self-induced relaxation oscillations if the input voltage is higher than
the tunneling threshold (Vd > e/(2Cj)) where e is the elementary charge and
kB is the Boltzmann constant. The naodot voltage V1 increases as the capac-
itance Cj is charged through the series resistance (curve AB), until it reaches
the tunneling threshold e/(2Cj), at which an electron tunnels from the ground
to the nanodot across the tunneling junction, resetting the nanodot voltage to
−e/(2Cj). This abrupt change in nanodot potential (from B to C) can be referred
to as a firing event. The nanodot is recharged to repeat the same cycles. There-
fore, a single-electron oscillator could be viewed as an integrate and fire neuron,
which aggregates inputs (or inputs from from neighboring neurons) producing
a pulse when its nanodot voltage reaches the threshold voltage (Fig. 1B:(b)).
By feeding a sinusoidal input to a single-electron oscillator, one can adjust the
probability of electron tunneling in the circuit: the tunneling rate increases as
the input voltage rises above the threshold and gradually decreases to zero as the
input approaches and falls below the threshold value. In other words, a single-
electron oscillator converts an analog input into digital pulses. A single-electron
oscillator can thus be viewed as a pulse-density modulator (PDM), that produces
a spike train (or produces zero) if the input signal exceeds (or falls below) the
threshold value.
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4 Model and circuit structure

The single-electron integrate-and-fire neuron explained in the preceding section is
used to study the implications of noises enhancing fidelity of signal transmission
in a neuronal single-electron circuit. The circuit is based on a model of the
vestibulo-ocular reflex (VOR) proposed by Hospedales et al. ([1]). In their work,
they reported that noises and heterogeneity in the intrinsic response properties
of neurons account for the high-fidelity in VOR functionality.

Fig. 2(a) shows the part of the model, which converts head movements into
neural spikes in the VOR, consisting of n neurons. The structural heterogene-
ity in the synaptic couplings (membrane time constants) of individual neurons
is represented by ξi. We refer to this heterogeneity as static noises. The neu-
rons receive a common analog input and produce spikes whose temporal density
corresponds to the amplitude of the input signal. The output terminal receives
pulses from all the neurons in the network to produce a spike train. The noises
introduced into the network lead to random and independent firing events in
the neurons, reducing the probability of synchrony in the network. In addition,
the variations in parameters increases the randomness with which the network
neurons fire, increasing the probability of a ready-to-fire neuron at any given
time, which consequently enhances the precision with which the neurons in the
network can encode signals with input frequencies higher those of individual
neurons.
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Fig. 2. (a) Neural network model of signal encoding in the VOR consisting of n neurons,
(b) Implementation with single-electron oscillators.

The network is implemented with single-electron IFNs (oscillators) as shown
in Fig. 2(b). The heterogeneity in the model was introduced in the circuit as
variations in the series resistance R. Note that R is a critical parameter in
setting the intrinsic response frequency of each neuron. Therefore, by tuning the
values of R, we could simulate the heterogeneity of membrane time constants of
actual neurons.
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5 Simulation results

In the simulations, the single-electron neurons were fed with a common input
voltage Vin = Vdd + V (t), where Vdd (bias voltage) was set to 7.8 mV to achieve
a monostable operation in the absence of input signals, V (t) is a pulsed input
voltage with an amplitude of 0.8 mV. The capacitance of the tunneling junctions
Cj was set to 10 aF. The simulation time was set to 800 ns, while the operation
temperature (T) was set to 0.5 K for simulation results shown in Figs. 3, 4 and
5(b) and (c).

Fig. 3 shows the transient response of a unit single-electron neuron. Fig. 3(a)
and (c) show the input signals with a frequency of 600 MHz and 250 MHz,
respectively. Fig. 3(b) shows the neuron response to input ”(a)”, while ”(d)”
shows the neuron respone to input ”(c)”. The series resistance was set to 100
MΩ. Fig. 3(d) shows successful encoding of the input signal (the neuron fires
once for each pulse in the input signal1) whose frequency is within the intrinsic
firing rate of a single neuron. In Fig. 3(b), the neuron could only trasmit some
of the input pulses, leading to a lower firing rate as compared to the input rate.
In other words, the neuron in (b) could only transmit some of the input pulses
toward the output. This degrades the fidelity of signal transmision along the
neural network.

 400  410  420  430  440  450

time (ns)

 7.8

 8.5

(c)

 

 

 

 

 

-8

-4

0

4

8

 400  410  420  430  440  450

 7.8

 8.5

time (ns)

(a)

V
n

o
d

e 
(m

V
)

V
in

 (
m

V
)

-8

-4

0

4

8

(b) (d)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.4   1.2  1.6 0.8

input signal frequency (GHz)

o
u

tp
u
t 

p
u

ls
e 

fr
eq

u
en

cy
 (

G
H

z)

(e)

Fig. 3. Transient response of a single neuron. (a) and (c) show input signals with
input frequencies of 600 MHz and 250 MHz, respectively. (b) and (d) show the output
characteristics of neurons fed with input signals of 600 MHz and 250 MHz, respectively.
(e) Output firing rate of a single neuron plotted against the input pulse frequency.

Fig. 3(e) shows the response of a single neuron over a wide range of input
frequencies. The horizontal axis shows the input frequency, while the vertical
1 Tunneling (firing) in single-electron devices involves a probabilistic time lag or wait-

ing time between when the node voltage exceeds the threshold voltage and when an
electron can actually tunnel from the ground to the node, sending a spike toward
the output terminal. Due to the effect of the time lag, a neuron might fail to fire
even after achieving the tunneling conditions as seen in Fig. 3(d). As a result, the
average firing rate would be somewhat lower than the input pulse rate



6 Noise-driven LSI architectures

axis shows the average firing rate of the neuron. The neuron response was linear
for input signals with a frequency of upto 0.5 GHz. Beyond this range, the output
was highly distorted. This shows that a single neuron can successfully encode
(respond to) signals with a maximum input frequency of 500 MHz.

The response of a population of neurons to various input frequencies was
investigated with two sets of neuron ensembles: homogeneous and heterogeneous
networks. In the homogeneous ensemble, the series resistances R1, R2, and R3

were set to the same value, whereas in the second set, heterogeneity (static
noises) was introduced by varying the values of series resistances in the three
neurons. The results are shown in Figs. 4 and Fig. 5.

Fig. 4(a) shows the input signal with a frequency of 600 MHz. Figs. 4(b1) and
(c-1) show the response of the homogeneous network, where the series resistances
R1, R2 and R3 were set to 100 MΩ. Fig. 4(b1) shows the firing events of individual
neurons in the network. Fig. 4(c1) shows the summed spike output (spike train)
at the output terminal. We could confirm that the neurons in the homogeneous
network tend to synchronize, firing at almost the same timing.
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Fig. 4. Transient responses of both homogeneous and heterogeneous networks. (a)
shows the input signal. (b1) shows the firing events of each neuron, while (c1) whows
the summed pulse output for the three neurons in the homogeneous network. (b2)
shows the firing events, and (c2) shows the summed pulse output of the heterogeneous
network.

Figs. 4 (b2) and (c2) show the response of neurons in the heterogeneous net-
work, where the series resistances were set to 110 MΩ for neuron 1, 100 MΩ for
neuron 2 and 90 MΩ for neuron 3. The firing events in the heterogeneous net-
work are more or less random as shown in Fig. 4(b2). The probability of having a
neuron with a potential near the threshold value, at any given moment, is higher
than in the case of a homogeneous network. Thus the network can respond to
any incoming pulses at a higer probability. This results in an improved encod-
ing of the input as illustrated by the spike train shown in Fig. 4(c2). In other
words, since the neurons fired irregularly, they could transmit the input pulses
with a higher temporal precision as opposed to the homogeneous network. This
is elaborated in more detail in Fig. 5 (curves (b) and (c)), where the transmis-
sion of signal over a wide range of frequencies is demonstrated. The horizontal
axis represents the frequency of input signals, while the vertical axis shows the
average firing rate (output frequency) for both neuron sets. In the case of the
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homogenous network, since the neurons tend to synchronize with time, their en-
coding frequency is the same as that of individual neurons. Contrary, neurons
in the heterogeneous network could correctly encode signals with input frequen-
cies upto 1 GHz, twice that of the homogeneous network. This demonstrates
that heterogeneity in the circuit parameters (presence of static noises) plays an
important role in improving the fidelity with which neurons can encode signals
with input frequencies far beyond the encoding capacity of individual neurons.
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Fig. 5. Output firing rate of an ensemble of neurons plotted against the input pulse fre-
quency. (a) and (b) show response characteristics of a heterogeneous network simulated
at a temperature of 10 K and 0.5 K, respectively. (c) shows response characteristics of
a homogeneous network simulated at 0.5 K.

6 Effect of dynamic noises

Hospedales et al. ([1]) investigated the importance of random noises in improv-
ing the fidelity of signal transmission in the VOR response. They concluded that
besides neuronal heterogeneity, externally induced noises also play an impor-
tant role in improving the network performance. These external noises could be
as a result of spontaneous increases or decreases of membrane potential due to
firing events in other neurons in the network. These changes are random and
are often referred to as dynamic noises. In our circuit, we studied the effect of
dynamic noises by considering thermally induced tunneling events in the net-
work. Curves(a) and (b) in Fig. 5 show the response characteristics of a network
simulated at 10K, and 0.5K, respectively. As the temperature increases, ther-
mally induced tunneling events in single-electron neurons increase, resulting in
an increase in the average firing rate in the network. This is illustrated by the
increased firing rate at a temperature of 10 K. Although this work suggests that
dynamic noises don’t play a critical role in increasing the maximum response
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frequency of the network, they however, increase the fidelity with which the net-
work can sample input signals within the maximum input signal frequency range
determined by heterogeneity in the network elements. This is evident at higher
input frequencies, where the ratio of the output pulse rate to the input pulse
rate starts to roll-off rapidly. The roll off is compensated for by the dynamic
noises, which reduces the effect of waiting time in electron tunneling.

7 Conclusion
In this study, we proposed and investigated the implication of heterogeneity
in transmission of high frequency signals in a neural network. Through Monte-
Carlo based computer simulations, we confirmed that heterogeneity in device pa-
rameters indeed improved the temporal precision with which the network could
transmit signals with high input frequencies within the network. A heterogeneous
network could correctly encode signals of upto 1 GHz, as compared to 500 MHz
in single neurons (or a network of homogenous neurons). Another important
factor to consider in improving the fidelity of this circuit would be the effect of
external and internal (dynamic) noises. In single-electronic devices, such noises
include thermally induced random firing events or the effect of environmental
noises. As we have shown, as the temperature increases, the dynamic noises also
increase compensate for the roll-off in response of the network, especially at
high frequencies. Although a comprehensive investigation on the implications of
dynamic noises to signal transmission is required, the preliminary results pre-
sented in this paper show that in addition to heterogeneity in neuron properties,
externally introduced noises could assist in further improving the fidelity of sig-
nal encoding in single-electron circuits. We should however, note that at higher
temperatures, beyond the results presented here, random tunneling as a result
of dynamic noises would increase rapidly leading to degradation of signal trans-
mission. Therefore, the value of dynamic noises to be introduced to the network
to achieve the best performance needs to be optimized.
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