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ABSTRACT
In this paper, we present analog VLSI implementation of
a resonate-and-fire neuron (RFN) model, and then consider
noise effects on its performance of signal detection. The
RFN circuit is a silicon spiking neuron that has second-
order membrane dynamics and exhibits dynamic behavior,
such as fast subthreshold oscillation, coincidence detection,
frequency preference, and post-inhibitory rebound. Due to
such dynamic behavior, the RFN circuit acts as a band-pass
filter and a coincidence detector at circuit level. Through
SPICE simulations, we will demonstrate noise effects on
the coincidence detection and the frequency preference of
the RFN circuit.

1. INTRODUCTION

Functional networks of silicon spiking neurons are shown
to be useful in a wide variety of applications [3]-[9]. Recent
research efforts have concentrated on real-time event-based
computation, in which coincidence or synchrony detection
plays essential roles in neural information processing, such
as auditory perception [6], onset detection [8], and learning
and memory [9]-[10]. Temporal filtering properties are also
significant to extract temporal structure of spike sequences
in which information may be encoded.

Computational performance of such functional networks
of silicon spiking neurons are limited if their components
are quite simple. For instance, the Axon-Hillock circuit [1],
widely known as an electronic analogue of the integrate-and
fire neuron (IFN) model, can only act as a low-pass filter.
In order to increase their performance, alternative silicon
spiking neurons [14]-[21], such as a low-power IFN circuit
with frequency adaptation [17] and an asynchronous chaotic
spiking neuron circuit [20], have been developed. These
circuits increase synchrony detection and temporal filtering
properties in network circuits. Synaptic circuits with short-
term plasticity can also increase computational performance
of silicon spiking neural networks [8], [10]-[13], however,
they can only work effectively at network level.

In our previous work, we have proposed analog VLSI
implementation of a resonate-and-fire neuron (RFN) model

[22] based on the Volterra system [21]. The RFN model
is a spiking neuron model that exhibits dynamic behavior
observed in biological neurons, such as fast subthreshold
oscillation, coincidence detection, post-inhibitory rebound,
and frequency preference. Due to such dynamic behavior,
the RFN circuit acts as a coincidence detector and a band-
pass filter at circuit level, and thus it is expected to be useful
for large-scale implementation of functional silicon spiking
neural networks.

In the present work, we consider noise effects on the
performance of the signal detection in the RFN circuit. By
using SPICE, we will show that random pulses modulate
the frequency preference to inputs, and then the circuit has
the noise robustness of the coincidence detection. These
results imply that the RFN circuit can work effectively and
efficiently under practical conditions, and provide us with
guidelines for implementing it into silicon chips.

2. ANALOG VLSI RESONATE-AND-FIRE NEURON

We here describe analog VLSI implementation of a resonate-
and-fire neuron (RFN) model.

2.1. Resonate-and-Fire Neuron Model

The RFN model is a spiking neuron model proposed by
Izhikevich, which has second-order subthreshold membrane
dynamics and a firing threshold [22]. The dynamics of the
RFN model are described by:

ẋ = bx − wy + I (1)

ẏ = wx + by (2)

or by an equivalent complex form:

ż = (b + iw)z + I (3)

where z=x+iy is a complex variable, the real and imaginary
parts, x and y, are the current- and voltage-like variables,
respectively, b and w are parameters, and I is an external
input. If Im z exceeds a certain threshold ath, z is reset
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Fig. 1. Schematic of the resonate-and-fire neuron circuit. The circuit consists of a membrane circuit, a threshold-and-fire
circuit, and excitatory and inhibitory synaptic circuits. The membrane circuit has second-order dynamics and two state
variables Ui and Vi, and thus shows oscillatory behavior. Synaptic inputs change the trajectory of the oscillation, and if Vi

exceeds a threshold voltage Vth, the threshold-and-fire circuit generates a spike Vpulse and resets Ui to a bias voltage Vrst.

to an arbitrary value zo, which describes activity-dependent
after-spike reset. This model has second-order membrane
dynamics, and thus exhibits dynamic behavior, such as fast
subthreshold oscillation, resulting in coincidence detection,
post-inhibitory-rebound, and frequency preference [22].

2.2. Circuit Implementation

We designed the RFN model as an analog integrated circuit
in the previous work [21]. Figure 1 shows the schematic
of the RFN circuit, which consists of a membrane circuit, a
threshold-and-fire circuit, and current mirror integrators as
excitatory and inhibitory synaptic circuits [2].

The membrane circuit was derived from the Volterra
system for modeling prey-predator interactions to mimic
membrane dynamics of the RFN model by using the current-
voltage relationship of subthreshold MOS FETs [21]. The
dynamics of the membrane circuit are described as follows:

C1
dUi

dt
= −g(Ui −Vrst) + Iin+ ĪUi− Ioexp

( κ2

κ + 1

Vi

VT

)
(4)

C2
dVi

dt
= Ioexp

( κ2

κ + 1

Ui

VT

)
− ĪVi (5)

where voltages Ui and Vi are state variables, C1 and C2 the
capacitances, g the leak conductance of the transistor M11,
κ the capacitive coupling ratio from the gate to the channel,
VT the thermal voltage, and Io the pre-exponential current
[2]. Iin represents a summation of synaptic currents:

Iin =
∑

j

IEPSCi,j −
∑

j

IIPSCi,j (6)

where IEPSCi,j and IIPSCi,j represent the i-th post-synaptic
currents through the j-th excitatory and inhibitory synaptic

circuits. Currents, ĪUi through M8 and ĪVi through M9, are
approximately described as follows:

ĪUi = αIUi(1 +
VDD − Ui

VE,p
) (7)

ĪVi = βIVi(1 +
Vi

VE,n
) (8)

where IUiand IViare bias currents, VDD the power-supply
voltage, VE,p and VE,n the Early voltage [2] for an nMOS
FET and a pMOS FET, respectively, and α and β the fitting
constants.

The equilibrium point of the circuit, (Uo, Vo), can easily
be calculated, and the stability of the point can be analyzed
by the eigenvalues of the Jacobian matrix of the circuit,

J =

[
−αIUi

VE,p
− κ2

κ+1
IVo

VT

κ2

κ+1
IUo

VT
− βIVi

VE,n

]
(9)

where IUoand IVo represent the equilibrium currents at the
equilibrium point, and we assumed the leak conductance g
is zero. We used diode-connected transistors for M1-M4

and short transistors that have small Early voltages for M7-
M10. As a result, the equilibrium point became a focus,
and thus the membrane circuit exhibited damped oscillation
in response to an input. In this case, the circuit dynamics
is equivalent to the membrane dynamics of the RFN model
near the equilibrium point.

Inputs thorough synaptic circuits change the trajectory
of the oscillation of the membrane circuit. If Vi exceeds
a threshold voltage Vth, the threshold-and-fire circuit that
consists of a comparator and an inverter generates a spike
(a pulse voltage Vpulse) and resets Ui to a bias voltage Vrst.
Thus, the behavior of the RFN circuit is qualitatively the
same as that of the RFN model.
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Fig. 2. Typical behavior of the RFN circuit.

3. RESULTS

We here show the performance of the signal detection in the
RFN circuit using the circuit simulator, T-Spice Pro, with
the model parameters for the AMI 0.35-µm CMOS process.

In the following simulations, the supply voltages were
set at VDD=1.5 V, Vth=830 mV, and Vrst=750 mV, the bias
current were set at IUi=IVi=10 nA. and Ibias=250 nA, and
the capacitance were set at C1=C2=1.2 pF. We used pulse
currents (width: 1 µsec) as synaptic inputs.

Figures 2 show typical behavior of the RFN circuit in
response to synaptic inputs. When a weak pulse (EPSC) that
cannot evoke a action potential (amplitude: 55 nA) arrives
at the circuit, a damped subthreshold oscillation occurs, as
shown in Fig. 2A. When two pulses (EPSCs) arrive at the
circuit at an interval of about 5 µs (Fig. 2B) or the interval
between the two pulses is nearly equal to the period of the
oscillation, 50µs (Fig. 2C), the circuit fires a spike. The
RFN circuit, however, does not fire a spike when the interval
between the two pulses is in other ranges (Fig. 2D). These
results indicate that the circuit is resonant with a sequence of
pulses at a resonance frequency, i.e., frequency preference,
and thus the circuit acts as a band-pass filter.
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Fig. 3. Frequency preference modulation.

Fig. 4. Network for coincidence detection.

We here show how random pulses affects the frequency
preference in the RFN circuit. We employed a sequence
of random pulses as background activity. The interpulse-
interval (IPI) of the pulses were generated by the Gaussian
distribution (the ratio of the standard deviation to the mean
IPI: 0.1). We set the amplitude of the pulses at 20 nA for
excitation and -20 nA for inhibition, respectively. Figure
3 shows the relationships between the resonance interval of
the circuit and the mean IPI of the background noises. These
relationships indicate that the frequency preference of the
circuit are modulated by the background noisy activity.

We then show the noise robustness of the coincidence
detection in the RFN circuit. We consider an RFN circuit
with five excitatory synaptic circuits, each of which carries
background random pulses (the mean of IPI: 7 µsec) and
rarely synchronous signals to the RFN circuit, as shown in
Fig. 4. The RFN circuit can detect synchronous signals
embedded in background pulses. If the frequency of the
background noisy pulses is high, these pulses are filtered
by the band-pass characteristics of the RFN circuit and the
synchronous signals can be detected at the same time since
the RFN circuit acts as a coincidence detector. In contrast,
many IFN circuits fire a spike in response to background
noises. Figure 5 shows that the coincidence detection of
synchronous signals given from 300 µsec to 302 µsec in the
presence of background noisy activity.
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Fig. 5. Noise robustness of coincidence detection.

4. CONCLUSIONS

We have shown the performance of the signal detection in
the RFN circuit. First, we have considered how random
noisy inputs modulate the resonance interval of the RFN
circuit. We have also shown that the RFN circuit can detect
synchronous signals embedded in background noises since
the RFN circuit act as a band-pass filter and a coincidence
detector at the same time. These results imply that the RFN
circuit work effectively in the presence of background noisy
activity and to be useful for practical applications.
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