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Abstract

In this paper, we introduce new analog devices that emu-
late natural chemical systems, called the reaction-diffusion
(RD) system. The RD system gives us a lot of clues and
insights into developing new architectures based on a new
paradigm in computing. We exhibit hardware RD devices
and their typical operation, including the production of
travelling and spiral waves in two-dimensional RD devices.

1 Introduction

Nonlinear oscillatory phenomena can be observed every-
where in the world. For instance, dissipative and autocat-
alytic reaction systems, which include almost every natu-
ral phenomenon, produce various spatiotemporal patterns
through oscillatory reaction and the diffusion of chemical
species. Chemical systems where the reaction and diffusion
of chemical species coexist under a nonequilibrium condi-
tion are called reaction-diffusion (RD) systems [1]. Typ-
ical oscillatory behavior in RD systems can be observed
in the Belousov-Zhabotinsky (BZ) reaction, which is a pe-
riodic oxidation-reduction phenomenon among liquid-state
reagents. It produces a variety in rhythm and order in the
form of propagating chemical waves [2].

The RD system gives us important clues into the rela-
tion between the chemical reaction and vital natural phe-
nomena. Recent topics in this field concern the con-
trol of phase-lagged stable synchronous patterns in two-
dimensional (2D) space [3, 4], called modelock or spiral
waves. Modelock is normally a negative factor in artificial
systems because of the difficulty in controlling, and thus
predicting, its dynamic behavior. It hampers the desired in-
phase synchronization of oscillator arrays, e.g., generating
an irregular heartbeat or unpredictable skews in a 2D array
of voltage-controlled oscillators for VLSI clocking. Sev-
eral ideas for practical applications that use the properties of
RD systems have also been proposed, e.g., ideas for chem-

ical image processing [5, 6], optimal path planning [7], and
binary logic processing [8]. These results suggest that natu-
ral systems that make actions primarily for themselves will
help us to both understand RD systems and reconstruct them
in artificial reaction media.

RD phenomena are usually observed in liquid-, gel- or
gas-state media. Our interest was to construct an artificial
RD system for asolid-state media, and to develop practical
applications using the solid-state RD system that can cope
easily with conventional digital computers. We developed
this artificial RD system, which we call areaction-diffusion
chip, to imitate various natural RD phenomena (e.g., orders
and rhythms, pattern formation, self organization in biolog-
ical systems, etc.) on silicon VLSIs [9, 10, 11, 12].

Implementing RD systems in hardware (VLSI) has sev-
eral advantages. Hardware RD systems are very useful for
simulating RD phenomena, even if the phenomena never
occur in nature. This implies that the hardware system is
a possible candidate for developing an artificial RD system
that is superior to the natural system. Moreover, hardware
RD systems can operate at much faster speeds than actual
RD systems. For instance, the velocity of chemical waves
in a BZ reaction isO(10−2) m/s [13], while that of a hard-
ware RD system will be over a million times faster than that
of the BZ reaction, independent of system size [9, 10, 11].
This property is useful for developers of RD applications
because every RD application benefits from high speed op-
erations. These properties encouraged us to develop these
new RD chips. In this paper, we introduce the hardware
RD systems we have recently developed; i.e., i) a device-
level implementation of a basic RD system and ii) an analog
CMOS circuit that uses analog cellular-automaton to imple-
ment typical RD systems.

2 The Reaction-Diffusion System

Chemical reactions are formulated in terms of temporal
differences in the concentration of chemical species. For
example, if substancex is dissolved in water, the tempo-
ral difference of the concentration ofx is expressed, by an



ordinary differential equation (ODE), as

d[x]
dt

= −k[x], (1)

where[x] represents the concentration andk the rate con-
stant. Although Eq. (1) is a linear ODE, most chemical
reactions, including dissipative and autocatalytic reactions
in natural systems, will be formulated by nonlinear ODEs
with the right side of Eq. (1) represented by a polynomial
of [x]. Nonlinear chemical reactions with multiple chemical
species are thus represented by a set of nonlinear ODEs as

d[xi]
dt

= fi([x1], [x2], . . . , [xN ]), (i = 1, 2, . . . , N) (2)

whereN is the number of species andfi represents the non-
linear reactive functions that depend on several different re-
active speciesxi.

The Belousov-Zhabotinsky (BZ) reaction was formu-
lated as Eq. (2). One well-known model of the BZ reac-
tion is referred to as the two-variable Oregonator [1]. The
dynamics are given by

d[x1]
dt

=
1
τ

(
[x1] (1− [x1])− a [x2]

[x1]− b

b + [x1]

)
, (3)

d[x2]
dt

= [x1]− [x2], (4)

where[x1] and [x2] represent the concentration of HBrO2

and Br− ions, respectively, whileτ , a andb represent the
reaction parameters. The value ofτ is generally set atτ ¿
1 since the reaction rate of HBrO2 ion is much faster than
that of Br− ions. The nullclines of the Oregonator where
d[x1]/dt = 0 andd[x2]/dt = 0 are given by

[x2] =
[x1] ([x1] + b)(1− [x1])

a ([x1]− b)
, (≡ l1) (5)

[x2] = [x1]. (≡ l2) (6)

A cross point of those two nullclines (l1 andl2) represents
the fixed point of the Oregonator.

Figure 1 shows the nullclines and trajectories of the
Oregonator with typical parameter-values (τ = 10−2 and
b = 0.02). The value of parametera is set at 1 [Fig. 1(a)]
and 3 [Fig. 1(b)]. Depending on the position of the fixed
point, the Oregonator exhibits oscillatory or excitatory be-
havior. Whena = 1, the fixed point is located on nulllcline
l1 at whichd[x2]/d[x1] > 0. In this case, the Oregonator
exhibits limit-cycle oscillations [Fig. 1(a)]. The oscillation
represents periodic oxidation-reduction phenomena in the
BZ reaction. On the other hand, the fixed point is located
on nulllcline i1 at which d[x2]/d[x1] < 0 when a = 3.
Under this condition, the Oregonator exhibits excitatory be-
havior [Fig. 1(b)] and is stable at the fixed point as long as
external stimulus is not given.
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Figure 1: Nullclines and trajectories of the Oregonator in
(a) oscillatory mode and (b) excitatory mode.

In the Oregonator, three circulative states are introduced
according to the oscillation phase; i.e., inactive (A), active
(B → C), and refractory periods (D→ A), as labelled in
Fig. 1(b). The inactive, active, and refractory states repre-
sent a depletion in the Br− ion, an autocatalytic increase
in the HBrO2 ion (oxidation of the catalyzer), and a deple-
tion in the Br− ion (reduction of the catalyzer), respectively.
When the Oregonator is inactive, it easily become active (A
→ B) by external stimuli. Then, it turns to the refractory
state (C→ D). During the refractory state, the Oregonator
can not be activated even if external stimuli is given.

It should be noted that Eqs. (1) to (4) represent the time
difference of the chemical species at apoint in the reaction
space. If the spatial distribution of the chemical species is
not uniform, the species will diffuse according to the gra-
dient of the concentration of the species. Such a diffusive-
reaction system with multiple chemical species is referred
to as areaction-diffusion(RD) system, and is described by
a set of partial differential equations as

∂[xi](r, t)
∂t

= Di∇2[xi] + fi

(
[x1], [x2], . . . , [xN ]

)
, (7)

wherer represents the space,∇2 the spatial Laplacian,Di

the diffusion constant. A two-variable RD system on a 2D
plane, which is referred to as a basic RD system, is de-
scribed in terms of Eq. (7) as

∂[u](x, y, t)
∂t

= Du

(∂2[u]
∂x2

+
∂2[u]
∂y2

)
+ fu

(
[u], [v]

)
, (8)

∂[v](x, y, t)
∂t

= Dv

(∂2[v]
∂x2

+
∂2[v]
∂y2

)
+ fv

(
[u], [v]

)
, (9)

where(x, y) represents the space, and([u], [v]) the concen-
tration of two-different chemical species [1].

Figure 2 shows a schematic image of an alternative con-
struction of the basic RD system. It consists of a 2D array
of chemical oscillators; e.g., the Oregonators, where each
oscillator is locally interconnected. An oscillator located at
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Figure 2: Discrete representation of basic RD system.

position(i, j) has two system variables[ui,j ] and[vi,j ]. The
dynamics are defined as

d[ui,j ]
dt

= fu

(
[ui,j ], [vi,j ]

)
+ gu

i,j , (10)

d[vi,j ]
dt

= fv

(
[ui,j ], [vi,j ]

)
+ gv

i,j , (11)

where the functionsfu andfv represent the nonlinear chem-
ical interactions between[ui,j ] and[vi,j ], and wheregu

i,j and
gv

i,j represent the external inputs to the oscillator. External
inputs are given to an oscillator so that activities[ui,j ] and
[vi,j ] can diffuse in the 2D array of oscillators. Such inputs
are given by five-point approximation of the Laplacian on
the 2D rectangular grid as

gu
i,j = Du

[u]i−1,j + [u]i+1,j + [u]i,j−1 + [u]i,j+1 − 4[u]i,j
h2

,

gv
i,j = Dv

[v]i−1,j + [v]i+1,j + [v]i,j−1 + [v]i,j+1 − 4[v]i,j
h2

,

whereh represents the distance between neighboring os-
cillators. The dynamics of the single oscillator [Eqs. (10)
and (11)] thus represent the discrete expression of Eqs. (8)
and (9). This expression allows us to understand the rela-
tion between natural RD systems and the physical hardware
structure. Namely, 2D RD phenomena can be imitated on
solid-state medium(e.g., VLSIs) where a lot of hardware
oscillators are regularly arranged on the VLSIs with diffu-
sive coupling among the local oscillator circuits.

Figure 3 shows numerical solutions to Eqs. (10) and (11)
using an Oregonator with typical parameter-values. The
nonlinear reactive functionsfu(·) and fv(·) in Eqs. (10)
and (11) are replaced with the right side of Eqs. (3) and
(4), respectively, with the transformation of system vari-
ables ([x1] → [ui,j ] and [x2] → [vi,j ]). Each oscillator
was set at excitatory mode (a = 3), and the values of the
rest of the parameters wereh = 0.01, Du = 5 × 10−4,
Dv = 0, τ = 10−2 andb = 0.02. The solution was numer-
ically obtained by solving the ODEs using the fourth-order

y
x

Figure 3: Typical numerical results of a RD system using
the Oregonator.

Runge-Kutta method. At each side of the square reaction-
space, we applied the Neumann boundary condition:

∇[u] = ∇[v] = (0, 0), (12)

where∇ = (∂/∂x, ∂/∂y). For example, the values of
[u0,j ] and[uN+1,j ] are treated as those of[u1,j ] and[uN,j ],
respectively. In Fig. 3, the values ofvi,j are represented in
grayscale (vi,j = 0: black,vi,j = 1: white). Several oscilla-
tors adjacent to the inactive oscillators were initially set at a
refractory state (left side of the white bar in Fig. 3). The in-
active oscillators adjacent to the white bar were suppressed
by the adjacent oscillators in the refractory state (oscillators
in the white bar). The inactive oscillators then entered an
active, inactive, or refractory state, depending on the degree
of the refractory condition. When the inactive oscillators
were in an active or inactive state, the tip of the bar rotated
inward, resulting in the generation of the spiral patterns that
are typically observed in a BZ reaction.

3 A Reaction-Diffusion Device using Minor-
ity Carrier Transport

The RD device we proposed is illustrated in Fig. 4. It
consists of four-layerp-n-p-n diodes arranged regularly on
a silicon substrate. Eachp-n-p-n diode is connected with
a capacitor and a current source to form a relaxation oscil-
lator, as shown in Fig. 5. This oscillator acts as a unit cell
that imitates a chemical reaction, a substrate-depleted reac-
tion. Therefore, we call the oscillator areaction cell. The
reaction cell produces minority carriers (electrons) in the in-
nerp region during the oscillation cycle. Our idea is to use
the minority carriers as diffusion substances; i.e., electrons
produced by a reaction cell will travel through the innerp
region by diffusion and reach the neighboring reaction cells
to activate these cells (see Fig. 4). A two-dimensional RD
system can thus be constructed on a silicon chip.

The state of the reaction cell can be represented by two
variables, i.e., chargeu stored on the capacitor and chargev
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of the minority carriers in thep-n-p-n diode. The dynamics
of the reaction cell are described by

du

dt
= i(u)− u

τ(u, v)
(13)

dv

dt
= −v +

u

τ(u, v)
(14)

where the chargesu andv are normalized. The bias current
i(u) from thepMOS current source is a function ofu and is
also normalized. The characteristic of thep-n-p-n diode is
represented by nonlinear functionτ(u, v). Minority-carrier
chargev increases through a multiplication process caused
by the feedback mechanism of thep-n-p-n diode, while ca-
pacitor chargeu decreases by an amount equal to the in-
creased minority carriers. The operation is categorized as a
substrate-depleted reaction.

The reaction cell can be oscillatory (astable) or excita-
tory (monostable) depending on the supply voltage, VDD.
It is oscillatory if the VDD is higher than the breakover volt-
ageVB of the p-n-p-n diode, and excitatory if the VDD
is lower than theVB. In the oscillatory condition (VDD
> VB), the capacitor is charged by bias currenti(u). As a
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Figure 6: Dynamical properties of the oscillatory reaction
cell (simulation). (a) Time evolution; (b) limit-cycle attrac-
tor on theu-v plane.
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Figure 7: Time evolution in the excitatory reaction cell
(simulation).

result, the capacitor chargeu increases until the capacitor
voltageVC reaches the breakover voltageVB. At this point,
the breakover of thep-n-p-n diode starts and the minority
carriers are injected from then+ region to thep region. The
autocatalytic multiplication of the minority carriers then oc-
curs to turn the diode on. The stored charge on the ca-
pacitor flows into the diode, making the capacitor charge
u (therefore capacitor voltageVC) decrease. Consequently,
the diode is turned off. The reaction cell repeats this cycle
and produces the oscillatory dynamics. Figure 6 illustrates
an example of the numerical solutions to Eqs. (13) and (14).
Figure 6(a) shows the relaxation oscillations for variablesu
andv. The limit-cycle attractor is shown in Fig. 6(b).

In the excitatory condition (VDD< VB), the capacitor
voltageVC cannot reach the breakover voltageVB because
VC does not exceed the supply voltage VDD (bias current
i(u) becomes 0 whenVC increases up to VDD). In this con-
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Figure 8: Generation of spreading concentric patterns in a
RD device (simulation).

dition, thep-n-p-n diode turns on only when the minority
carriers are injected from the neighboring diodes. Figure 7
shows an example of the excitatory behavior of the reaction
cell. The cell settles down in the stable state ofu = 1 and
v = 0, and no further change occurs as long as the minority
carriers are not injected. In the simulation, minority carriers
were injected from the outside when time = 50. Thep-n-p-
n diode turned on once by this injection, and then returned
to the stable state,

We designed a 2D RD device by arranging the reaction
cells on a plane and confirmed the device operation by com-
puter simulation. We used the following RD equations that
describe spatiotemporal dynamics at the position of each re-
action cell:

∂u(x, y)
∂t

= i(u)− u

τ(u, v)
,

∂v(x, y)
∂t

= Dv∇2v − v +
u

τ(u, v)
.

where(x, y) are the rectangular coordinates of any point on
the RD-device plane, andDv is the normalized diffusion
coefficient. In other positions, where no reaction cell exists,
we used the following equations:

∂u(x, y)
∂t

= 0,
∂v(x, y)

∂t
= Dv∇2v − v.

We solved these equations numerically using the fourth-
order Runge-Kutta method.

Figure 8 shows a result for a device with 200× 200 exci-
tatory reaction cells. The spatial density of the minority car-
riers is represented in grayscale (v = 0: black,v = 1: white).

(a) (b)

(c) (d)

Figure 9: Generation of rotating spiral patterns in a RD de-
vice (simulation).

With periodic injection of minority carriers at a point (e.g.,
P in Fig. 5), the RD device produced spreading concentric
waves of the minority carriers. This result indicates that
the injected carriers diffused around the injection point and
successfully induced a chain of reactions in the cells.

Figure 9 shows the result of the excitatory RD device
without any external injection of minority carriers. With an
appropriate initial pattern of minority-carrier densities, the
RD device produced rotating spiral patterns of the minority
carriers. Notice that the wave disappears at collision points
[Figs. 9(c) through (d)] because of the depletion of the mi-
nority carriers. This is the same phenomenon as observed
in natural RD systems.

4 Modelling the Reaction-Diffusion System
with Analog Cellular-Automaton

A cellular-automaton (CA) system is a discrete dynami-
cal system whose behavior is completely specified in terms
of finite local interactions [14, 15, 16], and is thus suitable
for VLSI implementation [17, 18]. The discrete expression
of basic RD models, introduced in§2, has a lot of similarity
to the CA system. First, it consists of a number of identical
cells (processors) and local connections among these cells.
Second, these cells are regularly arrayed on a 2D rectangu-
lar grid. Thus, the basic RD model can be replaced with a
CA model by assuming that: i) each cell represents interac-
tions between speciesui,j andvi,j at a specific point(i, j),
ii) concentration of chemical species([ui,j ], [vi,j ]) is repre-
sented by values of system variables in each cell, and iii)
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Figure 10: Nullclines and trajectories of the proposed ana-
log cell in (a) oscillatory mode and (b) excitatory mode.

local connections between cells are used to diffuse the val-
ues of the system variables , i.e., diffusion of the chemical
species.

We now introduce an analog cell that is qualitatively
equivalent to the Oregonator. We define the dynamics of
a cell as

d[x1]
dt

=
1
τ

(
−[x1] + f([x1]− [x2], β1)

)
, (15)

d[x2]
dt

= −[x2] + f([x1]− θ, β2), (16)

wheref(·) represents a sigmoid function defined by

f(x, β) =
1 + tanh βx

2
. (17)

The cell dynamics are designed so that the shape of null-
clines and flows ([ẋ1], [ẋ2]) are qualitatively equivalent to
that of the Oregonator. The cubic nullcline (l1 in Fig. 1) is
approximated by a nullcline of Eq. (15) as

[x2] = [x1]− β−1
1 tanh−1(2[x1]− 1), (≡ L1)(18)

while the linear nullcline (l2 in Fig. 1) is approximated by a
nullcline of Eq. (16) as

[x2] = f([x1]− θ, β2). (≡ L2) (19)

An analog cell, whose dynamics are described by Eqs. (15)
and (16), is very suitable for analog VLSI implementation
because the sigmoid function can easily be implemented on
the VLSIs by using differential-pair circuits.

The proposed cell exhibits qualitatively equivalent be-
havior to the Oregonator, as shown in Fig. 10. The values of
the parameters areτ−1 = 10, β1 = 5 andβ2 = 10. When
θ = 0.5, the fixed point exists on a nulllcline [Eq. (18)]
where d[x2]/d[x1] > 0, and the system exhibits limit-
cycle oscillations [Fig. 10(a)]. On the other hand, the sys-
tem exhibits excitatory behavior [Fig. 10(b)] when the fixed

(b) Du = 10-3, θ = 0.5

(a) Du = 5x10-4,  θ = 0.14

Figure 11: Numerical results of a RD system using the ana-
log cell in (a) excitatory mode and (b) oscillatory mode.

point exists on a nulllcline (19) whered[x2]/d[x1] < 0
[Fig. 10(b)].

Now, let us introduce the cell dynamics into the basic
RD model for the purpose of constructing a 2D CA system.
The dynamics of the CA are obtained by substituting the
right terms of Eqs. (15) and (16) for the nonlinear reactive
functionsfu(·) andfv(·) in Eqs. (10) and (11), and with the
transformation of the system variables ([x1] → [ui,j ] and
[x2] → [vi,j ]). The resultant dynamics of a cell are

d[ui,j ]
dt

=
1
τ

(
−[ui,j ]+ f([ui,j ]− [vi,j ], β1)

)
+ gu

i,j , (20)

d[vi,j ]
dt

= −[vi,j ] + f([ui,j ]− θ, β2) + gv
i,j , (21)

wheregu
i,j andgv

i,j represent external inputs to the cell (in-
teractions between a cell and its neighboring cells) defined
in §2.

Figure 11 shows spatiotemporal activities of the analog
CA with 50 × 50 cells (β1 = 5, β2 = 10, h = 0.01
andDv = 0) where the values ofvi,j are represented in
grayscale (vi,j = 0: black,vi,j = 1: white). The Neumann
boundary condition was applied at the side of the square
reaction-space. Whenτ−1 = 102 andθ = 0.14 at which
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the cell exhibits excitatory behavior, the 2D CA system pro-
duced spiral patterns [Fig. 11(a)], as is observed in the basic
RD system with the Oregonators (Fig. 3). In the simulation,
the diffusion coefficientDu was set at 5×10−4, and ini-
tial states of the cells are set at the same states as in Fig. 3.
The results indicate that the proposed analog CA is quali-
tatively equivalent to the basic RD system with the Oreg-
onators since the excitatory property of the analog cells is
inherently the same as that of the Oregonator.

Figure 11(b) shows the dynamic behaviors of the analog
CA with Du = 10−3 andθ = 0.5, at which the cell ex-
hibits oscillatory behavior. Initial values of the cells were
randomly chosen as[ui,j ] = RAND[0, 1] and [vi,j ] =
RAND[0, 1]. The CA produced 2D phase-lagged stable
synchronous patterns calledmodelock, due to weak cou-
pling between the neighboring cells. WhenDu > 10−3,
all cells exhibit synchronous oscillation. In other words, no
spatial pattern was produced.
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Fig. 13.

An analog circuit of the proposed cell and its device
layout are shown in Figs. 12 and 13, respectively. The
circuit consists of single capacitor and two operational-
transconductance amplifiers (OTAs), which implies that the
circuit can easily be implemented on silicon VLSIs using
conventional CMOS technology. The circuit can be ob-
tained by qualitative approximation of Eqs. (15) and (16).

When the rate constant of Eq. (15) is much larger than
that of Eq. (16), the differential term of Eq. (15) can be
neglected (τ ¿ 1), as explained in§2. On the other hand,
Eq. (16) withβ2 → ∞ forces the values of variable[x2] to
be 0 when[x1] ≤ θ, and while[x2] → 1 when[x1] > θ. If
the variable[x2] is forced to have the value within the range
[0:1], the temporal difference in Eq. (16) can approximately
be represented by binary values. Consequently, we obtain a
new dynamical equation from Eqs. (15) and (16) as

[x1] = f([x1]− [x2], β1) (22)

d[x2]
dt

=
{

w (if [x1] > θ)
−w (else)

(23)

wherew represents a positive and small constant. In Fig. 12,
an OTA labeled asβ1 serves as the function of Eq. (22),
while a capacitorC and the other OTA, receiving voltage
θ, produce the dynamics for Eq. (23). The positive constant
w is implemented in the OTA (labeled asw) wherew cor-
responds to the source current of a differential pair. The
output current of the OTA (w) becomes 0 when the voltage
of the output node[x2] is equal to the supply voltage (VDD
or VSS). The value of[x2] is thus restricted within the range
[VDD:VSS].

Figure 14 shows SPICE results of an extracted circuit
from the device layout shown in Fig. 13. A MOSIS 1.5-µm



CMOS technology file with a transistor model of BSIM3
(level 8) was used to evaluate the circuit with an actual de-
vice layout. The supply voltages of the OTA ofβ1 were set
at VDD = 4 V and VSS = 0.5 V, while that of the other OTA
(w) were set at VDD = 5 V and VSS = GND. The threshold
θ was set at2.5 V so that the circuit would exhibit oscil-
latory behavior. In the device layout shown in Fig. 13, the
capacitorC was implemented by a MOS capacitor (lower-
right rectangle in Fig. 13). As expected, the circuit exhibited
the qualitatively same behavior as the Oregonator; i.e., stiff
nonlinear oscillations. The size of the analog cell was 70×
70µm2.

5 Summary

We introduced silicon devices that imitate autocatalytic
and dissipative phenomena of reaction-diffusion (RD) sys-
tems. Numerical simulations showed that the RD device
can successfully produce concentric and spiral waves in the
same way as natural RD systems. These results encourage
us to develop new applications based on natural RD phe-
nomena using hardware RD devices.

The proposed devices and circuits are useful not only for
the hardware RD system but also for constructing modern
neuro-chips. The excitatory and oscillatory behaviors of the
RD device and circuit are very similar to actual neurons
that produce sequences of identically shaped pulses in time,
calledspikes. Recently, Fukai showed that an inhibitory
network of spiking neurons achieves robust and efficient
neural competition on the basis of a novel timing mecha-
nism of neural activity [19]. A network with such a timing
mechanism may provide an appropriate platform for the de-
velopment of analog VLSI circuits and could overcome the
problems of analog devices, namely their lack of precision
and reproducibility.
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