High-resistance resistors consisting of subthreshold-operated CMOS circuits
----LSI implementation of 1-1000 mega ohm resistors----

Shin’ichi Asai, Ken Ueno, Tetsuya Asai, and Yoshihito Amemiya
Department of Electrical Engineering, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0814 Japan
Phone: +81-11-706-7147, Fax: +81-11-706-7147
s_asai@lalsie.ist.hokudai.ac.jp

Abstract

We propose a CMOS circuit that can be used as an equivalent of resistors. This circuit uses a differential pair consisting of diode-connected MOSFETs and operates as a high-resistance resistor when driven in the subthreshold region. Its resistance can be controlled in a range of 1-1000 MΩ by adjusting the driving current for the circuit. The results of the fabrication and measurement of the circuit are described.

Keywords: integrated circuit, resistor, high resistance, differential circuit, subthreshold

1. Introduction

In CMOS integrated circuits, resistors are usually made using doped polysilicon layers. Polysilicon resistors, however, need a very large area if large values of resistance are required. For example, for a 100 mega-ohm resistor, we have to tolerate a large area of 0.2 millimeters square even if we use a 1-kΩ/square high-resistance poly layer and a 0.13-μm process technology. Large resistances are therefore difficult to implement in integrated circuits.

To solve this problem, we propose a concise circuit that operates as a high-resistance resistor. This circuit consists of a subthreshold-operated CMOS differential pair and can be used as an equivalent of high-resistance resistors. The following provides the details on this resistor circuit.

2. CMOS circuit equivalent to resistors

Figure 1 illustrates the principle of our resistor circuit. The circuit consists of diode-connected differential pair (M1, M2) driven by tail current I_0. The load currents (denoted by $I_0/2$) are fixed to half of the tail current. In this circuit, given a voltage ΔV between terminals 1 and 2, a current ΔI flows into terminal 1 and an equal current ΔI flows out of terminal 2. This current ΔI is proportional to ΔV if the differential pair is operated in its linear region. The circuit therefore operates as a resistor with terminals 1 and 2. Its resistance is given by $4mkT/(qI_0)$ if the circuit is operated in the subthreshold region, where m is the subthreshold slope factor, k is the Boltzmann constant, q is the elementary charge, and T is temperature. We can easily make a 100-MΩ resistor with a tail current of 1 nA.

3. Circuit design and fabrication

Figure 2 shows the entire configuration of our resistor circuit with a biasing subcircuit. We fabricated the circuit, using a 0.35-μm 2P-4M CMOS process technology. The aspect ratios $W(\mu m)/L(\mu m)$ of MOSFETs used for device fabrication are given in the figure. The size of the circuit was 105 x 110 μm.

In actual circuits, zero-volt currents ΔI_1 and ΔI_2 (see Fig. 3), or offset currents, flows through the resistor because of imbalances between MOSFETs in the circuit. This offset current consists of two components,
i.e., (i) common-mode offset current I_{CM} that flows into both terminals of the resistor, and (ii) differential offset current I_{diff} that flows from terminal 1 to terminal 2. That is, $\Delta I_1 = I_{diff} + I_{CM}$ and $\Delta I_2 = I_{diff} - I_{CM}$. The common-mode offset occurs if the currents ratio of M5 to M3-M4 is not 2:1. The differential offset occurs if currents in M1-M3 and M2-M4 are not equal with each other. This has influence on the resistance characteristic as follows.

Figure 4 shows the voltage-current (ΔV-ΔI) curve of the circuit, measured for $I_0 = 1$ nA. The characteristic was almost linear for voltages from -40 to 40 mV. The offset currents influenced the resistance characteristic: that is, (a) ΔV-ΔI curve did not pass the zero point, and (b) current ΔI_1 (solid line) flowing into terminal 1 was not exactly equal to current ΔI_2 (dashed line) flowing out of terminal 2.

Figure 5 shows the common-mode offset current and the differential one as a function of common-mode voltage V_{CM} for terminals 1 and 2, measured for $I_0 = 1$ nA and $V_{dd} = 3$ V. In this example, for a V_{CM} in a range of 0.4-2.8 V, the offset currents are small, so the circuit
Fig. 6 Resistance of resistor circuit as a function of tail current I_0. Solid line shows measured data, and dashed line shows theoretical resistance.

Figure 6 shows the resistance as a function of tail current I_0. The resistance was inversely proportional to I_0 and, for example, 123 MΩ for $I_0 = 1$ nA at room temperature.

4. Application—phase-shift oscillators

As an application, we made a CR phase-shift oscillator, using a low-pass filter consisting of our resistor circuits and capacitors. Figure 7 depicts the configuration, and Figure 8 shows the chip photograph. The oscillation frequency was theoretically given by $f = \sqrt{R/C}/(2\pi CR)$, where R is resistance and C is capacitance in the low-pass filter. Figure 9 shows measured waveforms of oscillation output. The frequency was 290 Hz for $C = 10$ pF and $I_0 = 1$ nA, and 2.7 kHz for $C = 10$ pF and $I_0 = 10$ nA. Our resistor circuit can provide high resistance easily, so we can build sine-wave oscillators for very low frequency applications.

Fig. 7 CR phase-shift oscillator. The elements circled by dashed lines represent resistor circuits.

Fig. 8 Chip photograph of phase-shift oscillator. Chip size is 350 μm × 370 μm. Parameters used for fabrication were $R_{in} = 5$ kΩ, $R_f = 170$ kΩ, $C = 10$ pF, $V_{dd} = 3$ V, and $E_0 = 1.5$ V.

(a) $I_0 = 1$ nA

(b) $I_0 = 10$ nA

Fig. 9 Output waveforms of phase-shift oscillator, measured for two values of tail current I_0 for resistor circuit.
5. Temperature compensation

The resistance of our circuit is $4mKT/(qI_0)$ and is proportional to temperature if tail current I_0 is constant. To cancel this temperature dependence, we designed an improved circuit that used a PTAT current (Proportional To Absolute Temperature current) as the tail current.

Figure 10 shows this circuit. A PTAT current source forms a β multiplier self bias circuit consisting of current mirrors (M6-M9 and other four transistors) and a switched-capacitor resistor (C_s and C_K, C_K). The PTAT current I_{PTAT} is given by $mKT/r\ln K/q$ if the MOSFETs are operated in the subthreshold region, where f is the switching frequency and K is the aspect ratio of M6 to M7. In this circuit, we set aspect ratio of M9/M10 to $\alpha : 1$, so the tail current of the circuit was I_{PTAT}/α. Therefore, theoretical resistance between terminals 1 and 2 is $4\alpha/(C_s f \ln K)$ and independent of temperature.

We simulated the temperature dependence, using a set of 0.35μm-CMOS device parameters. Figure 11 shows the temperature characteristic of the PTAT currents I_{PTAT} with the switching frequency as a parameter. The current changes linearly with temperature. Figure 12 shows the temperature dependence of the resistance. The temperature coefficient (TC) was 260-600 ppm/°C (solid lines) for resistances from 20 to 140 MΩ. In contrast, as shown by dashed lines, TC was 2610-2660 ppm/°C without temperature compensation (i.e., tail current is constant). Thus, we were able to obtain high-resistance current sources with a small temperature coefficient.