
Pulse-density Modulation with an Ensemble of
Single-electron Circuits employing Neuronal

Heterogeneity to achieve High Temporal
Resolution

Andrew Kilinga Kikombo, Tetsuya Asai and Yoshihito Amemiya

Hokkaido University, IST-M252, Sapporo 060-0814, Japan
kikombo@sapiens-ei.eng.hokudai.ac.jp

Abstract. We investigated the implications of static noises in a pulse-
density modulator based on Vestibulo-ocular Reflex model. We con-
structed a simple neuromorphic circuit consisting of an ensemble of
single-electron devices and confirmed that static noises (heterogeneity
in circuit parameters) introduced into the network indeed played an im-
portant role in improving the fidelity with which neurons could encode
signals whose input frequencies are higher than the intrinsic response fre-
quencies of single neurons. Through Monte-Carlo based computer simu-
lations, we demonstrated that the heterogeneous network could corectly
encode signals with input frequencies as high as 1 GHz, twice the range
for single (or a network of homogeneous) neurons.
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1 Introduction
Nano-electronic devices are viewed as promising building blocks for the next
generation of so-called Beyond CMOS LSIs. The Beyond CMOS devices include
single-electron devices [1], which operate by regulating the flow of single or a few
electrons. Single-electron circuits are thus viewed as promising building blocks
for ultra-low power electronic systems. In addition, because of the high device
integration as a result of the minute physical sizes of individual devices, single-
electron devices have the potential for applications in parallel-signal processing
systems that would require a high density of arrayed devices. In spite of these
advantages, single-electron devices suffer from high fabrication mismatches (i.e.
variance in individual device parameters), and also have low tolerance to internal
and external noises. Therefore to effectively utilize the merits of single-electron
devices in creating reliable and efficient electronic systems, there is need to come
up with a method to either (i) eradicate these set backs through improved fabri-
cation techniques or compensate for the drawbacks through additional circuitry
incorporated into the systems or (ii) effectively utilize these setbacks to create
new circuit architectures. If we look at how neuronal systems function, we find
that they have high heterogeneity in intrinsic response properties of individual
neurons; they have diverse variances in firing rates, and some of the neurons
are even defective. However, in spite of these set backs neurons, as systems, ac-
curately encode signals as they are relayed from sensory organs to the central
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nervous system, or to other organs. A number of reports suggest that neurons
in fact employ heterogeneity to effectively encode signals. Hospedales et al. ([3])
demonstrated that neurons in the VOR can encode high frequency signals with
a high temporal precision as a result of their heterogeneity.

In this study, toward establishing new circuit architectures for single-electron
devices, we investigate the implications of parameter heterogeneity in reliable
transmission of signals in an ensemble of single-electron integrate-and-fire neu-
rons (IFNs). Through Monte-Carlo based computer simulations, we show that
heterogeneity in device parameters indeed reduces synchrony among individual
neurons, consequently increasing the temporal fidelity with which neurons can
encode input signals with frequencies higher than the intrinsic response frequen-
cies of individual neurons.

2 Model, Circuit structure and Simulation results

This study is based on a model of the vestibulo-ocular reflex (VOR) proposed by
Hospedales et al. ([3]). In their work, they reported that noises and heterogene-
ity in the intrinsic response properties of neurons account for the high-fidelity
in VOR functionality. Fig. 1(a) shows the part of the model, which converts
head movements into neural spikes in the VOR, consisting of n neurons. The
structural heterogeneity in the membrane time constants of individual neurons
is represented by ξi. We refer to this heterogeneity as static noises. The neu-
rons receive a common analog input and produce spikes whose temporal density
corresponds to the amplitude of the input signal. The output terminal receives
pulses from all the neurons in the network to produce a spike train. The noises
introduced into the network lead to random and independent firing events in the
neurons, reducing the probability of synchrony in the network. This enhances
the precision with which the neurons in the network can encode signals with
input frequencies higher those of individual neurons.
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Fig. 1. (a) Neural network model of signal encoding in the VOR consisting of n
neurons, (b) Implementation with single-electron oscillators.

The above network is implemented with single-electron IFNs (oscillators) as
shown in Fig. 1(b). A single-electron oscillator consists of a tunneling junction
Cj, resistance R and a bias voltage source. The node voltage of the oscillator
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remains stable, if the bias voltage is lower than the tunneling threshold. When
the node voltage of the oscillator increases beyond the threshold voltage, say
as a result of an incoming input pulse, an electron tunnels from the ground to
the node, leading to an abrupt change in the node voltage. This is referred to
a firing event. The node voltage is recharged back to the resting potential to
repeat the same process. Each neuronal element in the network is implemented
with a single-electron neuron. From a previous study, we established that the
minimum number of neuronal elements required in such a network could be as
small as three. Therefore in the present investigation the number of neurons was
set to three. The heterogeneity in the model was introduced in the circuit as a
variation in the series resistance R. Note that R is a critical parameter in setting
the intrinsic response frequency of each neuron. Therefore, by tuning the values
of R, we could simulate the heterogeneity of membrane time constants of actual
neurons.

In the simulations, all the neurons were connected to an input voltage Vin =
Vdd + V (t), where Vdd (bias voltage) was set to 7.8 mV to achieve a monostable
stable operation in the absence of input signals, V (t) is a pulsed input signal with
an amplitude of 0.8 mV. The capacitance of the tunneling junctions Cj was set
to 10 aF. The simulation time was set to 800 ns, while the operation temperature
T was set to 0.5 K for simulation results shown in Figs. 2, and 3 ((A) and (B):
(b) and (c)). Fig. 2 shows the transient response of a single neuron. Fig. 2(a)
and (c) show the respective input signals with a frequency of 600 MHz and 250
MHz, respectively. Fig. 2(b) shows the neuron response to input ”(a)”, while
”(d)” shows the neuron respone to input ”(c)”. The series resistance was set to
100MΩ. Fig.2(d) shows successful encoding of the input signal (the neuron fires
once for each pulse in the input signal ) whose frequency is within the intrinsic
firing rate of a single neuron. In Fig. 2(b), the neuron could only encode some
of the input pulses, leading to a lower firing rate as compared to the input rate.
In other words, the neuron in (b) could only transmit some of the input pulses
toward the output. This degrades the fidelity of signal transmission along the
neural network. Fig. 2(e) shows the response of a single neuron over a wide range
of input frequencies. The horizontal axis shows the input frequency, while the
vertical axis shows the average firing rate of the neuron. The neuron response
was linear for input signals with a frequency of upto 500 MHz. Beyond this
range, the output was highly distorted. This shows that a single neuron can
successfully encode (respond to) signals with a maximum input frequency of 500
MHz. The response of a population of neurons to various input frequencies was
investigated with two sets of neuron ensembles: homogeneous and heterogeneous
networks. In the homogeneous ensemble, the series resistances R1, R2, and R3

were set to the same value, whereas in the second set, heterogeneity (static
noises) was introduced by varying the values of series resistances in the three
neurons. Fig. 3(A)(a) shows the input signal with a frequency of 600 MHz.
Figs. 3(b-1) and (c-1) show the response of the homogeneous network, where the
series resistances R1, R2 and R3 were set to 100 MΩ. Fig. (b-1) shows the firing
events of individual neurons in the network. Fig. (c-1) shows the summed spike
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Fig. 2. Transient response of a single neuron. (a) and (c) show input signals with
input frequencies of 600 MHz and 250 MHz, respectively. (b) and (d) show the output
characteristics of neurons fed with input signals of 600 MHz and 250 MHz, respectively.
(e) Output firing rate of a single neuron plotted against the input pulse frequency.

output (spike train) at the output terminal. We could confirm that the neurons
in the homogeneous network tend to synchronize, emitting pulses at almost the
same timing.
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Fig. 3. (A):Transient responses of both homogeneous and heterogeneous networks.
(a) shows the input signal. (b-1) shows the firing events of each neuron, while (c-1)
whows the summed pulse output for the three neurons in the homogeneous network.
(b-2) shows the firing events, and (c-2) shows the summed pulse output of the het-
erogeneous network.(B):Output firing rate of an ensemble of neurons plotted against
the input pulse frequency. (a) and (b) show response characteristics of a heterogeneous
network simulated at a temperature of 10 K and 0.5 K, respectively. (c) shows response
characteristics of a homogeneous network simulated at 0.5 K.

Figs. 3(A) (b-2) and (c-2) show the response of neurons in the heterogeneous
network, where the series resistances were set to 110 MΩ for neuron 1, 100 MΩ
for neuron 2 and 90 MΩ for neuron 3. The firing events in the heterogeneous
network are more or less random as shown in Fig. 3(A)(b-2). The probability of
having a neuron with a potential near the threshold value, at any given moment,
is higher than in the case of a homogeneous network. Thus the network can
respond to any incoming pulses at a higer probability. This results in an improved
encoding of the input as illustrated by the spike train shown in Fig. 3(A)(c-
2). In other words, since the neurons fired irregularly, they could transmit the
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input pulses with a higher temporal precision as opposed to the homogeneous
network. This is elaborated in more detail in Fig. 3(B) (curves (b) and (c)),
where the transmission of signal over a wide range of frequencies is demonstrated.
The horizontal axis represents the frequency of input signals, while the vertical
axis shows the average firing rate (output frequency) for both neuron sets. In
the case of the homogenous network, since the neurons tend to synchronize
with time, their encoding frequency is the same as that of individual neurons.
Contrary, neurons in the heterogeneous network could correctly encode signals
with input frequencies upto 1 GHz, twice that of the homogeneous network. This
demonstrates that heterogeneity in the circuit parameters (presence of static
noises) plays an important role in improving the fidelity with which neurons
can encode signals with input frequencies far beyond the encoding capacity of
individual neurons. It is also important to note the role of dynamic noises. As
the temperature increases, thermally induced tunneling events in single-electron
neurons increase, resulting in an increase in the average firing rate in the network.
This is illustrated by the increased firing rate at a temperature of 10 K in
Fig. 3(B) (curve (a)). Although this work suggests that dynamic noises don’t play
a critical role in increasing the maximum response frequency of the network, they
however, increase the fidelity with which the network can sample input signals
within the maximum input signal frequency range determined by heterogeneity
in the network elements. This is evident at higher input frequencies, where the
ratio of the output pulse rate to the input pulse rate starts to roll-off rapidly.
The roll off is compensated for by the dynamic noises, which reduces the effect
of waiting time in electron tunneling.

In summary, in this paper, we proposed and investigated the implication of
heterogeneity in transmission of high frequency signals in a single-electron neu-
ronal network. Through Monte-Carlo based computer simulations, we confirmed
that heterogeneity in device parameters indeed improved the temporal precision
with which the network could transmit signals with high input frequencies within
the network. A heterogeneous network could correctly encode signals of upto 1
GHz, as compared to 500 MHz in single neurons (or a network of homogenous
neurons). We also showed that as the temperature increases, the dynamic noises
also increase compensating for the roll-off in response of the network, especially
at high frequencies. We should however, note that at higher temperatures, be-
yond the results presented here, random tunneling as a result of dynamic noises
would increase rapidly leading to degradation of signal transmission. Therefore,
the value of dynamic noises to be introduced to the network to achieve the best
performance needs to be optimized.
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