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We fabricated an analog integrated circuit (IC) that implements the Lotka–Volterra (LV) chaotic
oscillator presented by Mimura and Kan-on [1986]. The LV system describes periodic or chaotic
behaviors in prey–predator systems in simple mathematical form, and is suitable for analog IC
implementation [Asai et al., 2003]. The proposed circuit consists of a small number of metal-
oxide-semiconductor field-effect transistors (MOS FETs) operating in their subthreshold region.
A new scaling factor of system variables, which was not discussed in [Asai et al., 2003], is also
introduced for quantitative studies of designing practical hardware LV systems.
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1. Introduction

The design of chaotic oscillators has been the sub-
ject of increasing interest during the past few years
[Chen & Ueta, 2002; Radwan et al., 2003]. Indeed,
analog integrated circuits that implement chaotic
oscillatory systems provide us with important clues
for exploring and discovering novel forms of infor-
mation processing. Many designs for chaotic oscilla-
tors were introduced starting with the use of a coil
in Chua’s circuit [Matsumoto et al., 1985] to the
use of large blocks such as operational amplifiers
[Elwakil & Soliman, 1998a, 1998b]. In both cases,
the fabrication area was very large. These designs
were also dependent on the use of floating capacit-
ors, high supply voltage and high power dissipa-
tion, which are not preferred due to the current
demand for portability. In this paper, we propose
micropower analog MOS circuits that exhibit cha-
otic behaviors with very simple circuit construction.

Although there are numerous simple chaotic
equations [Sprott, 2000a–2000c; Chen & Ueta,
2002], we have only employed a three-variable
Lotka–Volterra (LV) equation. The advantages of
the LV system are in its simplicity, absence of multi-
plication terms with nonlinear transform of system
variables [Asai et al., 2003], ease of scaling over a
wide range of frequencies, and ease of construction.
The proposed circuit is designed based on the use of
subthreshold metal-oxide-semiconductor field-effect
transistors (MOS FETs) and three grounded capac-
itors for realizing the LV equation, which is the
minimum requirement for the implementation of
a chaotic oscillator. This circuit operates on low-
supply voltage (2.5 V) and all MOS-FETs oper-
ate in their subthreshold region. In this sense, the
proposed circuit overcomes the previously men-
tioned drawbacks and can be used in manufacturing
portable devices.
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2. Analog MOS Circuits for
Lotka–Volterra Model with
Two Preys and One Predator

The Lotka–Volterra (LV) model is one of the ear-
liest predator–prey models to be based on sound
mathematical principles. It forms the basis of many
models used today in the analysis of population
dynamics [Goel, 1971]. Here, we employ an LV
model that describes interactions between three
species in an ecosystem, i.e. one predator and two
preys [Mimura & Kan-on, 1986]. In addition to the
predation of the preys, the two preys compete with
each other for their feeding ground. The dynamics
are given by

τ ẋ1 = (1 − x1 − cx2 − ky)x1, (1)
τ ẋ2 = (a − bx1 − x2 − y)x2, (2)
τ ẏ = (−r + αkx1 + βx2)y, (3)

where x1 and x2 represent the prey population,
y the predator population, τ the time constant,
and the rest (k, a, b, c, r, α and β) are control
parameters. The system exhibits stable, periodic
and chaotic behaviors that can be controlled by sin-
gle parameter r under some parameter constraints
[Mimura & Kan-on, 1986].

Analog MOS circuits for LV-type neural net-
works have already been proposed in the literature
[Asai et al., 2003]. Logarithmic transformation of
system variables were used to remove the multipli-
cation terms of system variables in the LV system.
In this paper, we introduce a new scaling constant
in the transformation.

By introducing the following variables with
scaling constant s:

X1 = s + ln x1, X2 = s + ln x2, X3 = s + ln y,

(4)

Eqs. (1)–(3) can be transformed into:

τ ′Ẋ1 = s′ − exp(X1) − c exp(X2) − k exp(Y ), (5)
τ ′Ẋ2 = as′ − b exp(X1) − exp(X2) − exp(Y ), (6)

τ ′Ẋ3 = −rs′ + αk exp(X1) + β exp(X2), (7)

where s′ ≡ exp(s) and τ ′ ≡ τs′. This logarithmic
transformation has two advantages in analog MOS
implementation: (i) the resulting equations [(5)–(7)]
do not have multiplication terms of system variables
and can be described by a linear combination of
exponential functions, which enables us to design
the circuit without an analog multiplier; (ii) expo-
nential nonlinearity is an essential characteristic of
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Fig. 1. Construction of the LV circuit.

semiconductor devices, which enables us to design a
circuit based on the intrinsic characteristics of semi-
conductors. Here, we use the exponential current–
voltage characteristics of subthreshold MOS FETs
[Vittoz, 1985; Andreou et al., 1991].

Figure 1 is a diagram of the construction of an
LV circuit. Applying Kirchhoff’s current law (KCL)
at node (a) and (b) in Fig. 1, we obtain

CV̇1 = I1 − I
(M1)
0 exp

(
κ

VT
V1

)
− I

(Mc)
0 exp

(
κ

VT
V2

)

− I
(Mk)
0 exp

(
κ

VT
V3

)
(8)

CV̇2 = I2 − I
(Mb)
0 exp

(
κ

VT
V1

)
− I

(M1)
0 exp

(
κ

VT
V2

)

− I
(M1)
0 exp

(
κ

VT
V3

)
, (9)

where Vi represents the node voltage, I1,2 the inject-
ing current, C the capacitance, κ the effectiveness
of the gate potential, VT ≡ kT/q ≈ 26 mV at room
temperature (k is Boltzmann’s constant, T temper-
ature, and q electron charge), and I

(Mi)
0 the fabri-

cation parameter of nMOS FET Mi given by

I0 ≡ µCox
W

L

1 − κ

κ
V 2

T (10)

where µ is the electron mobility, Cox the gate capac-
itance, and W and L the channel width and length
of MOS FETs [Vittoz, 1985]. Typical parameter val-
ues for minimum-size devices fabricated in a stan-
dard 1.5-µm n-well process are I0 = 0.5 × 10−15 A
and κ = 0.6. Parameter I

(Mi)
0 is proportional

(or inversely proportional) to the channel width
(or length) of MOS FETs. Since the dimensions
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(width/length) are responsible for the parameters of
the LV model, these must be predetermined before
the IC is fabricated. It should be noted that Eqs. (8)
and (9) are valid only when the MOS FETs are sat-
urated. Node voltages V1 and V2 are also applied to
the gates of MOS FETs Mαk and Mβ , respectively.
Because the currents of Mαk and Mβ are copied to
node (c) by two pMOS current mirrors (PCMs in
Fig. 1), the node equation is represented by

CV̇3 = −I3 + I
(Mαk)
0 exp

(
κ

VT
V1

)

+ I
(Mβ)
0 exp

(
κ

VT
V2

)
. (11)

Equations (8), (9) and (11) become equivalent to
Eqs. (5)–(7), respectively, when

Vi =
VT

κ
Xi (i = 1, 2, 3), (12)
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With the original parameter set of the LV model
[Mimura & Kanon, 1986], the values of system vari-
ables (x1, x2 and y) were restricted within interval
[0 : 1], which resulted in the extent of (−∞ : s VT /κ]
V for the circuit system variables (V1, V2 and V3)
obtained by Eq. (12). Notice that both V1 and V2

cannot take negative values due to the limit of sup-
ply voltage (Vi ≥ GND). Furthermore, Eqs. (8)
and (9) are valid only when the nMOS FETs are
saturated; i.e. V1, V2 ≥ 4VT ≈ 0.1V at room
temperature. Therefore, s (= ln s′) must satisfy the
condition

s > 4κ − ln min[xi(t)] (i = 1, 2). (16)

With a large negative Vi (xi ≈ 0), this limit is neg-
ligible because ẋi ≈ 0. Assuming that typical val-
ues for I0 and maximum subthreshold current are
O(10−15) A and O(10−7) A, respectively, we can
estimate s ≈ 18.4 (= ln 108), from Eq. (13). This
means that the circuit can emulate Eqs. (1) and (2)
perfectly as long as min[xi(t)] > 1.1×10−7 (we here
assumed κ = 0.6).

If we employ a nMOS transistor instead of
current source I3, on the other hand, negative V3

breaks the isolation of pn junctions between the
p-substrate and the drain of the nMOS transistor.
Here, we have to employ an off-chip nMOS transis-
tor as current source I3.

3. Experimental Results

We fabricated a prototype circuit with a scalable
complementary-MOS (CMOS) rule (MOSIS, ven-
dor: AMIS, n-well single-poly double-metal CMOS
process, λ = 0.8 µm, feature size: 1.5 µm). Figure 2
is a micrograph of the LV circuit. We employed the
same parameter set for the LV system (k = 10,
b = 1.5, c = 1, αk = 5, β = 0.5) as Mimura
and Kan-on [1986] where stable focus bifurcates
into chaotic oscillation via stable period-n cycles.
The resulting sizes of nMOS FETs are listed in
Table 1. The pMOS current mirrors (PCM) were
designed with a dimension of W/L = 4µm/1.6 µm.
We employed minimum size transistors for M1 and
PCM to design the circuit so that it was as compact
as possible, rather than compensating for device
mismatches between transistors. The circuit took
up a total area of 75 µm × 40 µm.

Before fabrication, we simulated the operation
range of variable V3 by using ideal current source
I3. Unfortunately, V3 took both positive and nega-
tive values when the given parameter set by Mimura

M1 Mc
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Fig. 2. Chip micrograph of a fabricated LV circuit (MOSIS,
vendor: AMIS, n-well single-poly double-metal CMOS pro-
cess, feature size: 1.5 µm, total area: 75µm × 40µm).
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Table 1. Designed size of nMOS FETs on LV
circuit. Corresponding parameters of LV models in
Eqs. (13) to (15) are k = 10, b = 1.5, c = 1, αk = 5,
and β = 0.5. Since λ = 0.8 µm and the feature size
is 1.5 µm, all the designed sizes are scaled down
by 1.5 µm/1.6 µm (≈ 94%) on actual chips.

MOS FET W (µm) L (µm)

M1 4 1.6
Mb 12 3.2
Mc 4 1.6
Mk 40 1.6
Mαk 20 1.6
Mβ 4 3.2

and Kan-on [1986] was used. Since finding a good
parameter set that ensures V3 > 0 is another subject
altogether, we employed an off-chip current source
as I3 with the original parameter set.

In the following experiments, we added off-chip
capacitors (C = 0.1 µF) due to the time resolution
of our measurement systems. The values of capac-
itances did not change the qualitative behaviors of
the circuit, as long as the value was much larger
than that of the gate capacitance of MOS tran-
sistors. We used Agilent 4156B as off-chip current
sources for input (I1, I2 and I3). Time courses for
V1, V2 and V3 were sampled simultaneously with
Agilent 4156B. The supply voltage (VDD) was set
at 2.5 V. The input currents (I1, I2) were fixed at
(250, 287) nA. We evaluated the dynamic behaviors
of the fabricated LV circuit by changing rest input
current I3 that corresponded to control parameter
r in Eq. (3).

Figure 3 plots the measurement results.
Figures 3(a) and 3(b) plot the time courses of sys-
tem variables (V1, V2 and V3) and trajectories on a
V1–V3 plane, respectively. In this experiment, I3 was
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Fig. 3. Experimental results for fabricated LV circuit. (a) and (c) show time courses for system variables (V1, V2 and V3).
(b) and (d) show trajectories on V1–V3 plane. (a) and (b) represent results for I3 = 320 nA, while (c) and (d) results for
I3 = 360 nA. (e) and (f) show time courses for system variables (V1, V2 and V3) trajectories on a V1–V3 plane, respectively,
when I3 = 420 nA.
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Fig. 3. (Continued )

set at 320 nA (compliance was set at −2.5 V). The
LV circuit exhibited stable oscillation with period-1
cycles. As predicted by simulations, V3 took positive
and negative values. An off-chip current source (or
nMOS transistor) is thus necessary for this circuit
with the original parameter set.

In Figs. 3(c) and 3(d), which represent the time
courses for system variables and trajectories on the
V1–V3 plane, respectively, I3 was set at 360 nA. The
LV circuit exhibited stable oscillation with period-2
cycles. Figures 3(e) and 4(f) plot the time courses
of system variables and trajectories on the V1–V3

plane, respectively. In this experiment, I3 was set
at 420 nA. The value for the maximum Lyapunov
exponents was 10.1, which indicated that the LV
circuit exhibited chaotic oscillation.

According to Mimura and Kan-on [1986], as
the value of control parameter r increases, Hopf
bifurcation occurs where stable focus bifurcates to
unstable focus with an enclosing limit cycle. Then
unstable focus bifurcates to stable focus. We con-
firmed this transition (stable focus → unstable focus
with enclosing limit cycle → stable focus) in the
LV circuit when I3 (∼ r) increased. Figure 4 is the
bifurcation diagram obtained from the LV circuit.
The diagram was created as follows: (i) when the
circuit had stable focus with a given I3, we plotted
a stable value for V3, (ii) when the circuit oscillated
with a given I3, we plotted a value for V3 at which
V̇3 = 0. When I3 < 182 nA, the LV circuit did not
oscillate (stable focus). Stable focus bifurcated at
I3 ≈ 182 nA to stable period-1 cycles. Increasing the
value of I3, further bifurcations to period-2 cycles,
period-4 cycles, and chaotic cycles occurred around
370 nA < I3 < 450 nA. Finally, unstable focus bifur-
cated to stable focus again at I3 ≈ 580 nA.

I3 (µ )

V
3

Fig. 4. Bifurcation diagram obtained from LV circuit.

The results in Fig. 4 indicate that the pro-
posed LV circuit has two important properties:
(i) although we used practical subthreshold MOS
FETs, the bifurcation property was qualitatively
consistent with the theoretical prediction; (ii) the
LV circuit exhibited stable oscillation with period-n
and chaotic cycles over a wide range of I3; i.e.
182 nA < I3 < 580 nA, which allowed it to main-
tain stable oscillation under a noisy environment,
even though subthreshold MOS FETs were used in
the circuit.

4. Summary

We proposed an analog integrated circuit (IC)
that implemented the Lotka–Volterra (LV) chaotic
oscillator. We designed a very simple (just 12 tran-
sistors) circuit for the LV oscillator where all tran-
sistors operated in their subthreshold region. The
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LV oscillator was fabricated with a 1.6–µm scalable
CMOS rule (MOSIS, vendor: AMIS, n-well single-
poly double-metal process, λ = 0.8 µm, feature size:
1.5 µm). The circuit took up a total area of 75 µm ×
40 µm. The qualitative behavior (bifurcation prop-
erties) agreed well with the theoretical prediction.
Furthermore, the LV circuit exhibited stable oscil-
lation with period-n and chaotic cycles over a wide
range of control current, which enabled us to design
a stable oscillator that could operate under a noisy
environment, even though subthreshold MOS FETs
were used in the circuit.

Implementing compact chaotic circuits on
CMOS ICs has significant advantages; i.e. a large-
scale 2D array of chaotic (nonlinear) oscillators can
easily be incorporated with conventional CMOS
technology. Diffusive LV systems, where each LV
oscillator is locally connected through diffusive cou-
pling, are known to produce various spatiotempo-
ral patterns [Mimura & Kanon, 1986; Jornè, 1977;
Fiasconaro et al., 2004]. This property is very use-
ful where we consider the diffusive LV system to
be a reaction–diffusion (RD) computing medium
[Adamatzky, 2001]. Analog ICs implementing the
2D array of LV oscillators should assist us in explor-
ing and discovering novel RD-based applications as
well as applications of nonlinear-coupled oscillators.
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