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Abstract

An analog MOS circuit is proposed for implementing a Lotka–Volterra (LV) competitive neural network which produces winners-share-
all solutions. The solutions give multiple winners receiving large inputs and are particularly useful for selecting a set of inputs through
‘‘decision by majority’’. We show that the LV network can easily be implemented using subthreshold MOS transistors. Results of extensive
circuit simulations prove that the proposed circuit does exhibit a reliable selection compared with winner-take-all circuits, in the possible
presence of device mismatches. These results pave a way to future implementation on a real device.q 1999 Elsevier Science Ltd. All rights
reserved.

1. Introduction

The winner-take-all (WTA) competition provides a way
to select the input of upmost importance (Cohen & Gross-
berg, 1983; Majani et al., 1989, 1989; Yuille, 1989; Wolfe et
al., 1991; Kaski & Kohonen, 1994; Taylor & Alavi, 1995).
The result of competition is typically represented by the
activation of a single neuron which receives the largest
input. The WTA competition, however, does not suit for
an analog circuit implementation since the selection of a
single winner may easily suffer from noise in inputs, partial
destructions of the circuits or deviations in physical
parameters of a group of equally designed devices
(Lakshmikumar et al., 1986; Pelgrom et al., 1989).

A Lotka–Volterra (LV) neural network, which was
recently derived from the membrane dynamics of compet-
ing neurons, possesses three types of steady-state solutions
(Fukai & Tanaka, 1997). Those solutions are classified as
the WTA, winners-share-all (WSA) and variant winner-
take-all (VWTA). The WSA solution gives multiple
winners in the order of magnitudes of external inputs. The
number of winners can easily be adjusted by a single para-
meter in the model. The selection of winners for WTA and

WSA cases does not depend on initial values of neuron
variables, whereas that for VWTA case does.

Among those solutions, the WSA solution can be
used to reduce the influence of the noise and device
mismatches of the analog circuits if an external signal
is selected by multiple winners. In this letter, we
propose a MOS circuit producing the WSA solution of
the LV networks for exploring a possible solution to the
difficulties in the matching analog devices. Since the
MOS transistors in the proposed circuit operate in a
subthreshold region, the electric power dissipation
from the circuit is very small. The low power dissipa-
tion is critical for realizing a large scale circuit. In
order to examine the influences of device mismatches
on the circuit’s performance, we conduct extensive simula-
tions of the proposed LV circuit with Simulation Program of
Integrated Circuit Emphasis (SPICE). The implementa-
tion on a real device is reported elsewhere (Asai et al.,
1997).

2. The Lotka–Volterra competitive neural network

The LV equation which describes competitive behavior
amongN identical neurons is given as (Fukai & Tanaka,
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wherezi is the activity of theith neuron,g represents an
input which is nonspecific to each neuron,Wi represents
neuron-dependent inputs ande is a small positive constant.
Thee term prevents anyzi from becoming 0, so that losers
and winners can interchange if the magnitudes of {Wi} are
changed occasionally. Each neuron has a self-inhibitory
connection of the strength normalized to unity andl is
the relative strength of all-to-all lateral inhibitory connections.

Let the external inputs obey

W1 $ W2 $ W3 $ … $ WN21 $ WN $ 0; �2�
ande � 0 for the time being. The WSA solution to the LV
equation appears when

l , l2 ;
g 1 W1

g 1 2W1 2 W2
: �3�

The winners are neurons which received largest external
inputs among all. The steady-state solution withd winners is
given by

zi � 1
a

1
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1 2 l
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independently of initial values of zi, where
a ; dl 1 1 2 l; kWlD ; d21Pd

j�1 Wj . The actual number
of winners can be determined implicitly by

g 1 Wd .
ld

1 2 l
kWlD 2 Wd

ÿ �
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The r.h.s. of (5) is an increasing function ofd while the
l.h.s. is a decreasing function ofd. Thus there exists an

upper bound ford above which condition (5) is not satisfied.
This upper bound gives the number of winners.

Condition(5) indicates that the number of winners
decreases, and finally becomes one, as the relative strength
l of the lateral inhibition approaches unity. On the other
hand, all the neurons remain active forl less
than lL ; g 1 WN

ÿ �
= g 1 WN 1

PN
j�1 Wj 2 NWN

� �
, which

means that no neural selection occurs for 0, l , lL.
Note that 0, lL , l2 , 1.

The WTA l2 , l , l1 ; g 1 W1

ÿ �
= g 1 W2

ÿ �ÿ �
and

VWTA l . l� � solutions to the LV equation were also
obtained by Fukai & Tanaka (1997), but they are not
discussed here since we consider those solutions less impor-
tant in the circuit than the WSA solutions.

3. An analog circuit for the Lotka–Volterra neural
network

The LV equation can be transformed into a form more
suitable for analog circuit implementation.

Introducing new variablesyi � ln zi , we can rewrite (1) as

t _yi � g 0 1 Wi 2 exp�yi�2 l
XN
j±i

exp�yi�: �6�

whereg 0 representsg 1 1exp�2yi�. The circuit implemen-
tation of the system described by (6) is much easier than that
of (1), because (i) the products of the system variables
disappear, and (ii) each processing unit has an exponential
response function, a fundamental characteristics of many
types of semiconductor device. Although the present LV
neural network has all-to-all connections, the complexity
of the connections can be easily reduced toO(N) owing
the uniformity in the strength of lateral inhibition. Namely,
we rewrite (6) as

t _yi � g 1 Wi 2 �1 2 l�exp�yi�2 l
XN
j�1

exp�yi�; �7�

T. Asai et al. / Neural Networks 12 (1999) 211–216212

Fig. 1. The circuit for the LV neural network withN external inputs. The circuit consists of a single inhibitory neuron unit (H-Cell) andN excitatory neuron
units (E-cells).



and introduceN excitatory cells (E cells) and one inhibitory
cell (H cell) as shown in Fig. 1. Note that thee -dependent
term ing 0 is omitted since the term is not necessary in the
circuit implementation of (6) because of a property of MOS
transistors, as will be seen later. The H cell receives an
excitatory connection of unit strength from each E cell,
while an E cell receives an afferent inputg 1 Wi , a self-
inhibitory connection of strength 12 l� � and an inhibitory
connection of strengthl from the H cell. The response
functions of the E cell and H cell are defined as exp(x)
and x, respectively. We use this system for the circuit
implementation of our LV neural network. In this
way, a large-scale neural network could be implemented
on a small chip area owing to the simple circuit structure of
neuron units andO(N) complexity of connections among
the units.

Figs. 2 and 3 show schematic diagrams of the E- and H-
cell circuits realized by a small number of MOS transistors,

respectively. Applying Kirchhoff’s current law (KCL) at
node (a) in Fig. 2, we can obtain the equation

C _Vi � IM4
i 2 IM1

i 2 IM2
i ; �8�

where C and IMa
i stand for a MOS capacitance and the

current of transistorMa
i of the ith E-cell circuit. In the

subthreshold region of operation,IM2
i is ideally given by

IM2
i � I0exp kVi =VT

ÿ �
; �9�

whereI0 is the zero-bias current for the given device,VT �
kT=q (k is the Boltzmann constant,T is temperature andq is
the charge of an electron), andk measures the effectiveness
of the gate potential. Similarly,IM1

i is given as

IM1
i � I0exp�kVcom=VT� �10�

in terms of the gate-source voltage of transistorM1
i , as long

as it operates in the saturation regionVi $ 4VT

ÿ �
. The

current mirror structure ofM2
i and M3

i implies thatIM3
i or

the output current of theith circuit is equal toIM2
i . Applying

KCL at common node (b), we obtain the currentIM1
H of M1

H

in the H-cell circuit as

IM1
H � I0

XN
j�1

exp�kVj =VT�; �11�

which is equal toIM2
H of the current mirror structure. The

currentIM2
i which represents the global inhibition on E cells

needs to be mirrored toIM1
i with an externally modifiable

ratio. To this end, the transistorsM3
H ;M

4
H ;M

5
H in the H-cell

circuit and M1
i i � 1; 2…N� � in the E-cell circuits are

employed as translinear multiplier/divider (Andreou et al.,
1991). Then summing the voltages around the loop GND–
(e)–(d)–(c)–GND in Fig. 3 imposes the following relation
on the voltages in the H-cell circuit:

Va 1 Vb 1 Vc 1 Vcom� 0; �12�
whereVa;Vb and Vc stand for the gate-source voltages of
transistorsM3

H ;M
4
H andM5

H, respectively. Representing the
gate-source voltages with their respective drain-source
subthreshold currents, and assuming that all devices have
identical values fork and I0, we obtain
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From (11) and (13), we can easily derive

IM1
i � I �1�H IM1

H

I �2�H

� bI0

XN
j�1

exp�kVj =VT�; �14�

whereb represents the ratio ofI �1�H to I �2�H . By replacing
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Fig. 2. The E-cell circuit composed of four MOS transistors. Each external
input is given to the circuit as the gate voltageV�e�i . The E-cell circuits are
connected with the H-cell circuit through the terminals (b) and (c).

Fig. 3. The H-cell circuit composed of five MOS transistors. The parameter
l of the LV neural network is controlled by the current source magnitude
ratio �I �1�H =I �2�H �.



the current sources forI �1�H and I �2�H with MOS transistors
operating in the saturation region,b is rendered exter-
nally modifiable through the gate voltages of those
transistors.

The afferent input to each E cell is given by an input
current to transistorM4

i . Therefore, the strength of the affer-
ent input can be externally controlled by changing the gate
voltageV�e�i of M4

i through

IM4
i � I0exp�2kV�e�i =VT�: �15�

Here V�e�i , 0� � must be in the range which ensures the
operation ofM4

i in the subthreshold region.

Now substituting (9), (14) and (15) into (8), we obtain

C _Vi � I0exp�2kV�e�i =VT�2 I0exp�kVi =VT�

2 bI0

XN
j�1

exp�kVj =VT�; �16�

which becomes equivalent to (6) with the following substi-
tution:

CVT

I0k�1 1 b� ; t;
k

VT
Vi ; yi ;

exp�2kV�e�i =VT�
1 1 b

; g 0 1 Wi ;
b

1 1 b
; l:

�17�

Note thatl is in the interval (0,1) sinceb . 0. Therefore,
the proposed circuit produces WSA solutions as required.

In practice we can omit thee -term in the circuit imple-
mentation and simply replaceg 0 with g in (17). The reason
why this term can be omitted is as follows. Remember that
the term was necessary in (1) to preventzi from becoming
zero. Suppose that the LV neural network gives the WTA
solution with cell 1 being a winner:z1 . 0 andzi � 0 for
i ± 1. In the transformed system (7), this means thaty1 �
ln��g 0 1 W1�=k� and all otheryi ’s are 2∞ because of the
logarithmic relationyi � ln zi . Large negativeyi for the
losers implies that the inhibitory effects of the losers on
the winner vanish and the effects of the winner on the losers
dominate to give the WTA solution.

This divergence to negative infinity, however, never
occurs in the circuit. WhenVi # 4VT and M1

i starts to
leave the saturation region, the relation (10) ceases to be
valid. Consequently, the lateral inhibition term represented
by bI0

PN
j�1 exp�kVj =VT� in (16) decreases rapidly to zero,

rather than toI0, asVI approaches zero in the equation for the
losers. This indicates thatVi does not go to negative infinity
for the losers because the driving term itself vanishes. Thus
the losers acquire a small nonvanishingVi, giving zi . 0.

4. Simulation results

In the following SPICE simulations, the capacitance of
the E cells and the dimensions of the MOS transistors are
assumed as C�10 pF and W/L�6 mm/4mm. For other para-
meters of the transistors, we employ the typical values
provided by MOSIS (CMOS process, feature size: 2mm).

A transient response of the WSA circuit withN � 10 is
shown in Fig. 4. In this simulation, all transistors have iden-
tical values for the device parameters. Figs. 4(a) and (b)
show the time courses of output currentsIM2

i

n o
and

membrane voltagesVif g for l � 0:7, which correspond to
zi and yi respectively. The value of the afferent input current
for each neural circuit is given by

IM4
i � 3002 20× i �nA�; i � 1;…;10: �18�

The inequality (5) predicts that winners should be the
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Fig. 4. The dynamic behavior of the circuit model showing the WSA
solution with three winners. The time courses of the output currentsIM2

i

and the membrane voltagesVI at the node of the E cells are presented in (a)
and (b), respectively.



neurouns receiving the first three largest inputs. The result
shown in Fig. 4(a) is consistent with this prediction. From
Fig. 4(b), it is also found thatVi for losers do not diverge to
negative infinity, as expected.

Device mismatches of on-chip transistors are considered
to be a drawback when we use the subthreshold regions. In
the following simulations, the mismatches are embedded in
the values of zero-bias currentI0 since they may vary for
different transistors to a much greater extent than the values
of k (Pavasovic et al., 1994). The following Gaussian distri-
bution is assumed forI0:

P�I0� � 1����
2p
p

s
exp

�I0 2 Iav�2
2s2

 !
; �19�

whereIav ands represent the average value of the zero-bias
currents and the standard deviation ofI0 respectively.Iav is
fixed at 16 fA. The mismatches ofI0 will give rise to the
deviations of the strength of lateral inhibition, and the inho-
mogeneous strength of lateral inhibition can result in erro-
neous selection of winners. We are interested in studying to
what extent the WSA solution produced by the LV circuit is
influenced by the magnitude ofs . The network perfor-
mance is measured by the correlation function:

corr�Vc;Vn� � k Vc· Vnl 2 k Vclk Vnl������������������
k V2

cl 2 k Vcl2
q ������������������

k V2
nl 2 k Vnl2

q �20�

whereVc represents the vector of equilibrium voltagesVi’s
in the LV circuit in the absence of the mismatches, whileVn

represents the vector of the voltages in the presence of the
mismatches. If the value of the correlation is close to unity,
the influence of the device mismatches is small. The value
of the afferent input current for each neural circuit is given
by

IM4
i � i �nA�; i � 1;…;100: �21�

Fig. 5 shows the results of simulations for LV circuit
with N�100. The figure indicates that when the LV
circuit produces a WTA solution (l ! 1), even a
small s makes the selection of a solution unpredictable
since an inappropriate neuron accidentally becomes a
winner because of the mismatches. On the other hand,
the selection becomes reliable as the number of winners
is increased in the WSA solution (l,0.9). In the cases,
correct winners are activated with high probability
according to ‘‘decision by majority’’.

In actual analog VLSIs, theI0 values of two nominally
identical transistors may maximally differ by a factor of two
(Mead, 1989;Andreou et al., 1991). If the distribution is
Gaussian as assumed here, these values lie within a range
Iav /9<1.8 fA. Fig. 5 indicates that the WSA circuits with
l#0.8 will perform nearly perfect selection even in the
presence of the device mismatches.

5. Concluding remark

We have proposed a MOS circuit representing a Lotka–
Volterra competitive neural network and showed its char-
acteristics. The influences of the device mismatches were
investigated by circuit simulations, varying the magnitudes
of the deviation in the zero-bias current. With the proposed
circuits, a large number of unit cells can be integrated on a
chip since (i) the complexity of connections is reduced to
O(N) by introducing a single inhibitory cell; (ii) the quad-
ratic interaction terms from the original LV neural network
were removed by adopting an exponential transfer charac-
teristics for excitatory neuron units, which makes the circuit
organization extremely simple; (iii) the electric power dissi-
pation from the circuit is expected to be very small owing to
the subthreshold operation of the MOS transistors.

Encouraged by the results of the present simulations, the
LV integrated circuit was recently fabricated in Toyohashi
University of Technology. The experimental results showed
that the circuit does exhibit reliability in WSA solutions
(Asai et al., 1997).
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