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Abstract
本論文の目的は、次世代集積機能デバイス（量子デバイス）の物理的振る舞

いおよび構造的特徴を積極的に利用して信号処理を行う新しい集積回路アー
キテクチャの検討と実応用につなげることである。
これまで、集積回路の高機能化・高性能化は基本素子であるトランジスタの

微細化により進められてきた。しかし、素子の寸法が小さくなるにつれて量
子効果や素子ばらつき（通常の回路動作にとっては望ましくない影響）が顕著
になり、近い将来に微細化の限界が避けられないとも言われている。これら
の問題点を解決するにはプロセス技術の向上により素子ばらつきの抑制、新
しい材料の開発をもって量子効果を抑制する方法または設計の段階でエラー
補正回路を組み込む方法が研究されている。その一方、近年の微細加工技術
の進歩により、これまで困難であった量子集積ナノ構造の作成が可能となり、
量子効果を積極的に利用するデバイスの研究も盛んに行われる様になった。
CMOSデバイスによる集積回路と並ぶ次世代量子デバイスの候補として単電
子デバイスが注目を浴びている。しかし単電子デバイスの動作は現用のCMOS
デバイスと異なるため、従来の手法と異なる新しい回路構築方法（回路アー
キテクチャ）と信号処理の方法を考える必要がある。また、国際半導体ロー
ドマップ（ITRS）の最近の調査によれば、これからの LSIの高機能化・高性
能化においてデバイス技術だけでなくアーキテクチャの技術革新の必要性が
高まってきている。つまり、これまでのノイマン型アーキテクチャの延長上
ではなくて、デバイスそのものの特性を理解し、またデバイス構造も生かし
た信号処理方法を考える必要がある。本論文では微細化によって生ずる量子
効果を排除するのではなく、積極的に利用した回路アーキテクチャを検討す
る。ここでは単電子デバイスに着目し、新しい回路構成及びアプリケーショ
ンを提案し、コンピュータシミュレーションにて動作確認を行う。
単電子回路はクーロンブロッケードを利用して電子の輸送を一つ一つ制御

し、極低消費電力で動作する LSIの基本素子として期待されている。さらに
単電子デバイスの素子寸法は数ナノメートルオーダーとなっており、必然的
に極低小面積な回路を構成することができる。多数の単電子素子を集積すれ
ば空間的に高分解能な量子ドット集積体デバイスを実現することができ、セ
ンサへの新しいアプリケーションに応用できる。単電子デバイスは電子トン
ネリングにより、離散的な挙動を示す。また量子ドット上に抵抗体を堆積し
た単電子振動子素子は緩和振動を示し豊富な非線形ダイナミクスを有する離
散力学システムといえる。基板上に集積された単電子デバイスの一つ一つを
信号処理機能を持たせば新しい集積回路を組むことが可能である。本論文は
上記の単電子回路の特徴―構造的特徴および豊富な非線形ダイナミクス―
を組み合わせた従来の LSI回路の枠を超える新しい集積回路開拓を行う。本
研究で得られた成果の概要は以下に示す。
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• 結合型単電子デバイスの非線形特性の解析

本論文では、単電子回路の非線形ダイナミクスを把握するために、容量
結合の振動子対および２次元ネットワークを取り上げて、その非線形特
性を解析した。解析結果より、単電子でバイスは多周期振動、初期状態
に依存する複数アトラクタの発生、振動子のノード電位パターンから
成る散逸構造の発生、振動子ノード間の相互作用とトンネル事象の伝
搬（トンネル波の発生）等の非線形的な性質が存在することが明らかに
なった。これらの非線形性を利用することで新機能を持つ集積システム
の実現する可能を示唆した。上記の解析結果に基づき、以下具体的な２
つの単電子システムを提案した。

• 量子ドット集合体のを利用したフォトン位置検出システム

量子ドット集積体の構造的特徴および結合型単電子デバイスのドット間
におけるトンネル波の伝搬を利用した高空間分解能な二次元フォトン位
置検出センサを提案した。従来の入射フォトンの二次元位置を検出する
デバイスとしてマイクロチャンネルプレート（光電子増倍管の二次元集
積体：以下MCP）が使われている。MCPの検出精度はその空間分解能
で決まるが製作プロセスの制限により１０μ m以下にする事は困難で
ある。そこで本研究では、単電子ネットワークを利用する事により高空
間分解能なセンサを実現する事を提案した。このセンサは正負交互に
バイアスされた単電子振動子ネットワークからなる。空間分解能を 0.1
μ m以下にする事が可能である。フォトンが入射してネットワーク内
の振動子の一つに当たると、そのクーロンブロッケードが破れて電子
トンネルが発生する（フォトン誘発トンネリング）。そのため振動子の
ノード電位が変化し、それが隣接する振動子のトンネル事象を誘発す
る。このトンネル波はネットワーク全体に拡がってセンサの周縁に到達
する。トンネル波が周縁に到着する時刻を観測することで波の発生場所
（フォトンの入射位置）を知る事ができる。以上の着想をもとに具体的
なデバイス設計方針を開発し、プロトタイプデバイスを例として計算
機シミュレーションによりフォトン位置検出の動作を確認した。

• 生物の信号処理機能に学んだ単電子振動子ネットワークシステム

単電子素子の非線形性を利用して生物の持つ高い機能を模倣するため
の信号処理アーキテクチャを提案した。ここでは、比較的にしくみが明
らかとなっている網膜の輪郭検出と動き検出の動作を単電子振動子ネッ
トワークでコンパクトにハードウェア化する方法を提案した。これを具
体的な回路にするときには「デバイス特性ばらつき」と「環境（熱）雑
音」が問題となるが、これを排除するのではなくて、逆に利用して処理
能力の向上につなげる方法を考えた。パルス密度変調にもとづいてノ
イズを活用しながら輪郭検出と動き検出を行う単電子ネットワークの網
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膜回路を設計し、ノイズ利用により SN比や動作精度が向上することを
計算機による動作シミュレーションで確認した。
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Abstract
This thesis aims at establishing novel signal processing architectures for single-

electron devices.
The present trend in improving the performance of silicon LSIs has been pri-

marily as a result of the continuous scaling of CMOS devices. The need to scale
transistors has led to improvement of fabrication technologies. With the advamced
LSI fabrication technologies, research on fabrication of minute nano scale struc-
tures (devices) has attracted a lot of attention. Such devices include nano wires,
quantum nano dots and single-electron devices.

Single-electron devices utilize quantum-mechanical effects to control transport
of electrons at the single level. Thus single-electron devices inherently operate
with minimum low power dissipation. Additionally, owing to the minute physical
sizes of single-electron devices, they are considered as potential devices in im-
plementing parallel-based information paradigms that would require high device
densities.

Single-electron devices operate on different principles as compared to the con-
ventional MOSFET devices. Therefore to employ them in signal processing sys-
tems, there in need to establish new circuit architecture frame works that fully
utilize their properties. This research aims at exploiting both dynamical and struc-
tural properties of single-electron devices toward establishing LSI platforms for
nano devices.

This research starts with investigating non-linear characteristics of coupled single-
electron devices. Single-electron devices portray interesting non-linear dynamics:
a single-electron device shows relaxation oscillations, while a double-oscillator
system (two single-electron oscillators coupled through a capacitor) have attractors
of oscillation that are independent of initial node voltage conditions. A quadruple
oscillator system (two capacitively coupled double-oscillator systems) show multi
periodic oscillations. Furthermore, by coupling single-electron devices, one can
control the flow of tunneling events within the device network.

By combining the above non-linear dynamics with the structural properties, we
proposed a two-dimensional photon position detecting circuit, and evaluated its
performance. Secondly, by obtaining hints from neuronal systems, we proposed
two bio-inspired LSI circuits: an edge detection circuit and a motion detector cir-
cuit. The thesis also discusses the implications of device fabrication mismatches
and environmental noises in fabricating the two bio-inspired circuits. Instead of
getting rid of such noises, we propose a novel method where such noises are ac-
tively utilized to improve the performance of LSI circuits.
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1
Introduction

1.1 Background
This research aims at establishing a novel architectural platform for designing

electronic circuits based on the operation principles, and employing both structural
properties and non-linear dynamics of quantum nano electronic devices.

For the past 4 decades, the continuous scaling of semiconductor devices has
been the primary driving force behind improving the performance of digital infor-
mation processing systems. The decreasing feature sizes of transistors have been
accompanied by dramatic increase in speed and integration densities, which have
in turn led to increased and diversified functionality in LSI circuits. This trend has
been viable mainly due to guaranteed reliability in the downscaled devices. Reli-
ability corresponds to high yields per die, hence low production costs (high cost
efficiency), giving the circuit designer the opportunity to create reliable integrated
systems with improved processing speeds, and increased functionality. However,
as the physical feature sizes approach the deep sub-micron regime, process varia-
tions and undesirable internal (and or external) noises associated with nano-scale
properties pose critical concerns on the future of scaling [1]; they dramatically re-
duce the reliability of electronic devices on the edge of nano-scales. Additionally,
as CMOS transistors are scaled down, the average power dissipation per transistor
increases exponentially due to leakage currents. As we scale down further, the
density of transistors per unit area is expected to increase even further, thus driv-
ing the increase in power dissipation per unit area at a faster rate. Consequently,
the number of transistors that can be integrated would be limited by the maximum
allowable power density of approximately 100 W/cm2, and not by the size of
transistors. This means that future integration capacities of scaled CMOS devices
is fundamentally determined by two critical factors: size of transistors and power
density, both of which are rapidly approaching their practical limits in the near
future [2], [3].

Getting rid of such nano-scale properties would involve improving device fabri-
cation technologies, or introducing error-detecting circuits within the system. The
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1. INTRODUCTION

latter would lead to advanced complexity, and design tradeoffs in using high inte-
gration capacities available to the circuit designer. Consequently, a new approache
into utilizing and not eradicating nano-scale properties in future electronic devices
is seen as a promising breakthrough in future LSI circuits. This has led to ex-
tensive research into the so called emerging research devices (ERDs) [5]. Such
devices include nano-electronic devices such as single-electron devices, quantum
dot devices, nano-wires, carbon nanotubes etc. Nano scale devices operate un-
der entirely different operation principles from the present conventional CMOS
devices.

In employing such devices in future information and signal processing systems,
we need to come up with new ways of designing electronic circuits: novel method-
ologies to fully utilize the computation potentials and the terascale level of inte-
gration that such devices offer. This calls for the need of innovative circuit archi-
tecture platforms for nano-devices. In a recent report by the International Tech-
nology Roadmap for Semiconductors (ITRS) [6], it is predicted that improving
the performance of future LSI circuits will not only depend on the improvement
of fabrication technologies, but also on innovative circuit architectures that can
accommodate future electronic devices. In other words, circuit architectures, that
can accommodate new device concepts, are expected to play an important role
in improving the performance of future LSI circuits. Examples of such architec-
tures include heterogeneous architectures, molecular architectures, morphic (bio-
inspired) architectures, hybrid computing architectures [7].

In this research, we investigate non-linear characteristics of coupled single-
electron devices and use such characteristics to propose innovative circuit archi-
tectures and applications suitable for implementation with single-electron devices.
The proposed architectures subtly utilize the nano-scale properties of single-electron
devices; they employ both dynamical characteristics and structural properties of
single-electron devices to establish new circuit architectures and signal processing
technologies.

1.2 Objective
Single-electron devices are viewed as potential devices for use in LSI circuits

because (i) they operate by controlling the flow of electrons at the single level, thus
they can operate with extreme low power dissipation and (ii) due to their small fea-
ture sizes, they have potential for high levels of integration. In other words, owing
to the minute sizes of single-electron devices, they could be integrated to create a
functional device with a high spatial resolution for sensor applications. Such a sen-
sor would require the constitutive elements to have ultimate low power dissipation,

2



1.2. OBJECTIVE

to circumvent the thermal constraint explained in the preceding section 1.1. Fur-
ther more, single-electron devices exhibit a high degree of non linearity because
of the coexistence of continuous time and discrete time dynamics. By combining
these two properties of single-electron devices, we could create a highly func-
tional LSI devices that can compliment the function of the present conventional
CMOS LSIs. By employing the two properties mentioned above, we propose a
2 dimensional photon position sensor network with a high spatial resolution, and
confirm its operation through computer simulations. To realize such a sensor, one
would be required to detect signals from one device and feed them to the next (or
neighboring) devices. From a practical point of view, with such a high density
of devices it would be impossible to fabricate wires between the device elements.
Even if this could be achievable, the high parasitic capacitance would make it im-
possible to retrieve signals. To solve this problem, the proposed photon sensor
employs capacitive coupling introduced between individual devices, that enables
signal transmission through the device network. This is realized by laying posi-
tively and negatively biased devices in a checkered pattern to facilitate propagation
of signals within the sensor device. We further expand our focus into realizing
reliable systems with failure prone devices. As we mentioned in the preceding
section, as the size of devices decreases, the device parametric variations also in-
crease. This is true to both CMOS devices as well as nano devices. Therefore, to
fabricate our photon position sensor, we have to come up with ways to to come up
with ways of mitigating the effects of process variations. Additionally, since logic
states in nano-devices, in particular, single-electron devices is represented by an
extremely low number of electrons, this renders them vulnerable to environmen-
tal (thermal) noises. Therefore as we look into new circuit architectures, we have
to be aware of the process variations and noise induced errors in future LSIs. A
promising solution to noise-related problems could be solved by considering how
living organisms carry out signal processing. Such LSIs are referred to as neuro-

morphic LSIs. This is discussed in detail in the third part of this research, where
we propose circuit architectures that are inspired by image processing mechanisms
in the retina. In addition, we evaluate the implications of noises in implementing
the proposed circuits, where instead of eliminating such noises, a novel method
on how to exploit them to improve the performance of LSIs is proposed. The pro-
posed methodologies show that we can actually utilize these noises to improve the
performance of LSI circuits.

The thesis is outlined as follows.

• Chapter 1 explains the background and purpose of this research.

• Chapters 2 and 3 give introduces the operation of single electron devices,
where the Coulomb-blockade phenomenon and methodology of simulating

3



1. INTRODUCTION

single-electron oscillator circuits is discussed.

Part (I) of the thesis consists of chapters 4 and 5.

• In chapter 4, the thesis focuses on the basics of dynamical systems, where
a brief description of the terminology used in describing dynamical systems
is introduced.

• Chapter 5 introduces non linear dynamics of single-electron devices as dy-
namical systems; the operation principle of single-electron oscillators is ex-
plained and non linear dynamics of capacitively coupled systems are inves-
tigated. The chapter starts by giving details of the circuit configuration and
equations governing their operation. Their dynamics are confirmed through
computer simulations, and the results are illustrated with the use of attrac-
tors of oscillation, phase diagrams, bifurcation maps, and diagrams showing
basins of attraction.

The chapters that follow focus on practical applications of single-electron
devices in information and signal processing LSIs. They are divided into two
parts: the first part (Part (II): chapter 6) explains about a two-dimensional
photon position sensor that utilizes both the non-linear characteristics and
structural properties of single-electron devices. The second part (Part (iii))
consists of chapters 7, 8 and 9, where circuit architectures that employ non-
linear properties of single-electron devices to mimic signal processing in
biological signal processing systems, and the implications of noises in LSIs
are discussed. The details are as follows.

• Chapter 6 discusses a two-dimensional sensor that utilizes both structural
properties of single-electron devices to achieve a high spatial resolution,
and also makes use of non linear dynamics in signal propagation between
neighboring devices.

• Chapters 7 and 8 focus on circuit architectures inspired by information pro-
cessing in biological systems. Chapter 7 describes a motion detection sensor
inspired by motion detection schemes in insects, while chapter 8 describes
an edge detection sensor that is inspired by edge detection in the vertebrate
retina.

• Chapter 9 focuses on creating reliable electronic systems with unreliable
computing devices: that is we introduce a new concept of information pro-
cessing where noises are exploited in improving the performance of elec-
tronic systems.

• Finally, chapter 10 concludes with a summary of this research.
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2
Single Electron Devices

2.1 Introduction
The single electron device, which unlike ordinary electronic devices, operates

by controlling the transport of single or small number of electrons through the
Coulomb blockade phenomenon is seen as a promising device for future LSI cir-
cuits. A single electron device transports electrons across the tunneling junction
depending on bias voltage: if the voltage of any of the circuit nodes exceeds (or
falls below) the threshold voltage, an electron tunnels from the ground to the
node (or from the node to the ground), leading to a discrete change in the en-
tire circuit node voltages [17]. Tunneling junctions, are fabricated by sandwich-
ing an extremely thin layer of an electrically insulating substance between two
conducting plates (electrodes) to make a metal-insulator-metal tunneling junc-
tion(Fig. 2.1) [2], or confining a 2-dimensional electron gas of a GaAs/AlGaAs
heterostructure to minute islands by Schottky gates [3] and [4].

For an electron to travel from one conducting plate to the other, it has to ”ride
over” the potential barrier created by the intermediate insulator material, between
the two conducting electrodes. From the stand point of classical mechanics, elec-
trical transport through a barrier is not possible. However, in quantum physics,
particles assume wave-particle duality behavior, thus as a waves, electrons can

Cj , Rt

Tunneling Junction

Figure 2.1: Single-electron tunneling junction consisting of a tunneling capaci-
tance Cj, and a tunneling resistance Rt.
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2. SINGLE ELECTRON DEVICES

wave function
potential barrier

Electrode Electrode

Figure 2.2: Electron tunneling across a junction.

leak through the potential wall to the other side across the insulator (Fig. 2.2). A
detailed explanation on the fundamentals of single-electron devices is illustrated
in reference [17].

This chapter begins with an elaboration of the Coulomb blockade phenomenon
in sec. 2.2, followed by a description of single electron simulation methodology
(sec. 2.3).

2.2 Coulomb Blockade Phenomenon
Electron tunneling across a tunneling junction, in a given circuit, takes place

only if the net electrostatic energy of the entire circuit would decrease as a result
of the tunneling event. To understand this phenomenon, consider Fig. 2.3, where
a tunneling junction is connected to an external current source. Considering the
electrostatic energy of the circuit, before and after a single electron tunnells as
shown in Fig. 2.3, we obtain the resulting change in energy as

∆E =
|Q|2

2Cj
− |Q − e|2

2Cj
,

�� ��2.1

where Cj is the capacitance of the tunneling junction, and e is elementary charge
of an electron. Since tunneling can take place only if the change in electrostatic
energy ∆E of the system is positive, it follows that tunneling is favorable if the
charge Q on the junction falls in the range of

−e

2
< QandQ >

e

2

�� ��2.2

as shown in Fig. 2.4.
As shown in the diagram, a tunneling event can occur only if the charge ac-

cumulated on the junction exceeds e/2 for a downward tunneling, and decreases
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Cj

Node

+Q

-Q downward 
tunneling

Tunneling junctionupward 
tunneling

Figure 2.3: Single-electron tunneling junction connected to a constant current
source.

Q

e

E=Q2/2Cj

e/2-e/2

tunneling: favorable tunneling: prohibited 

pre-tunneling electrostatic energy

post-tunneling electrostatic energy

Figure 2.4: Energy diagram illustrating the Coulomb blockade phenomenon. Tran-
sitions are favorable when the charge on the junction is in the range |Q| > e/2.
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2. SINGLE ELECTRON DEVICES

beyond −e/2 for an upward tunnneling (if the bias current is connected in the
opposite direction).

For single electron phenomenon to be observed in nano-scale tunneling junc-
tions, a number of criteria are mandatory. These include the tunneling resistance,
and the electrostatic energy, determined by the size of the tunneling capacitance.

(i)Tunneling resistance [5]
In classical theory, an electron is assumed to be well localized. However, in quan-
tum mechanics theory electrons are described by wave functions, indicating the
probability of the presence of an electron. If a tunnel barrier is insufficiently
opaque, the electron wave function extends through the barrier and the electron
is not clearly localized on the island. The opaqueness of a tunneling barrier is
described by the tunnelling resistance Rt. A sufficient condition for observing
coulomb blockade phenomenon is:

Rt � Rk = h/e2 ≈ 25.8 kΩ
�� ��2.3

where h is Plank’s constant.
(ii)Electrostatic energy

Secondly, the size of the tunneling junctions (in other words, the capacitance of
the tunneling junction Cj) has to be small enough so that the electrostatic energy
Ec required to transport a single electron across the junction exceeds the thermal
energy.

Ec =
e2

2Cj
� kBT,

�� ��2.4

where kB is Boltzmann’s constant and T is the absolute temperature. If this condi-
tion is not satisfied, the thermal energy would provide enough energy required for
an electron to tunnel, thus rendering electron control across the tunneling junction
impossible.

2.3 Simulating Single-electron Devices
Simulating single electron devices involves calculating the free energy of the

system, bearing in mind that tunneling takes place only if the energy after the
tunneling event takes a smaller value. Further more, electron tunneling is a prob-
abilistic process, which has to be incorporated in the simulation process. To sim-
ulate single electron circuits, two prominent methods have been widely studied:
simulation by Monte Carlo and the Master Equation methods.

Simulation by the Master Equation method [7] assumes that tunneling depends
on the momentarily state of the circuit and that the transition takes place at random
times. This can be expressed by the equation
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∂Pi(t)
∂t

=
∑

[ΓijPj(t) − ΓjiPi(t)] ,
�� ��2.5

where Γij shows the rate of transition form state j to state i and Pi(t) is the time
dependent occupation probability of state i.

The Monte Carlo method [6] calculates the probability of an electron tunneling
across a particular junction, by considering the charge in the intermediate node.
To calculate the tunneling rate, firstly, one has to calculate the free energy (∆Ei)
for each and every node in the circuit, which is expressed as

∆Ei =
∑

i

(Qi)2

2Ci
−

∑
i

(Qi − ∆Qi)2

2Ci
+

∑
i

∆QiVi

�� ��2.6

where Qi is the charge on the ith node, ∆Qi is the change in the circuit charge
after tunneling takes place, and ∆QiVi is the energy dissipated by the bias voltage
Vi. Secondly, the average tunneling rate Γi, expressed in terms of the free energy
and the tunneling resistance Rt, is computed as

Γi =
1

e2Rt

∆Ei

1 − exp[−∆Ei/kBT ]
,

�� ��2.7

which at temperature T = 0 K reduces to

Γi =

{
1

e2Rt
, ∆Ei > 0

0, ∆Ei ≤ 0

�� ��2.8

The Monte Carlo method itself generates random numbers to simulate stochastic
models. Since single electron tunneling is a probabilistic event, the Monte Carlo
method is used to calculate the waiting time (ti) between when the tunneling con-
ditions are met and the actual tunneling event. To do so, we take the reciprocal of
the tunneling rate and multiply this with a random number r (0 < r < 1) to obtain
ti as

ti =
1
Γi

ln[r] ,
�� ��2.9

provided ∆Ei (Eq. 2.6) takes a positive value at that instant.
After calculating the waiting times for all the nodes, consider the node with the

shortest waiting time and alter the node voltages accordingly. A simplified flow
chart of the Monte Carlo method is shown in Fig. 2.5.
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Choose tunneling event with the shortest 

  waiting time and update node voltage and charge

Compute 
   > free energy 

    > tunnel rate 

       > waiting time 
for each and every circuit node

Set circuit initial conditions 

       node voltages Vi(0), node charge Qi(0)      

check time limit 

End

NO

YES

Figure 2.5: Flow chart of Monte Carlo method of simulating single-electron cir-
cuits.
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3
Single Electron Oscillator

The elementary circuit used in this research—the single-electron oscillator, con-
sists of a tunneling junction, connected in series with a high resistance. The
single-electron oscillator produces relaxation oscillation dynamics, consisting of
a continuous-time region and a discrete-time region. In the sections below, the
configuration and operation principle of the single electron oscillator is explained
in detail.

3.1 Operation of a Single-Electron Oscillator
The SET oscillation cell (Fig. 3.1) is a constituent element of our single-electron

oscillator circuits. It consists of a tunneling junction (capacitance = Cj) and a high
resistance R connected in series at node 1 and biased with a positive or a negative
voltage Vd. At the low temperatures at which the Coulomb blockade effect is ob-
served (i.e. temperature �e2/(kBTCj)), the cell produces self-induced relaxation
oscillation if Vd > e/(2Cj), where e is the elementary charge and kB is the Boltz-
mann constant. See K.K. Likharev et al., [18], and D.V. Averin et al., [19], [4] for
detailed explanation. Figure 1(b) shows the waveform of the oscillation of voltage
V1 at node 1 for a positively biased cell. The node voltage gradually increases as
junction capacitance Cj is charged through resistance R (curve AB). When the
voltage reaches the threshold e/(2Cj), it drops discontinuously to −e/(2Cj) be-
cause of an electron tunneling from the ground to node 1 through the junction,
again gradually increasing to repeat the same cycles. The dynamics is expressed
by a combination of continuous differential equation dV1/dt = (Vd − V1)/(RCj)
for charging curve AB and discrete difference equation ∆V = −e/Cj for discon-
tinuous drop BC, where ∆V is the difference in the node voltage before and after
tunneling. The period to of oscillation is to = RCj ln(Vd+e/2Cj

Vd−e/2Cj
).

Strictly speaking, tunneling is a stochastic process with a probabilistic delay be-
tween when the node voltage exceeds threshold voltage e/(2Cj) and when actual
tunneling event takes place. Therefore, the period of oscillation shows probabilis-
tic fluctuation expressed by to + ∆t, where probabilistic delay or waiting time ∆t
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3. SINGLE ELECTRON OSCILLATOR

Figure 3.1: Single-electron tunneling (SET) cell: (a) circuit configuration and (b)
waveform showing oscillation of node voltage V1.

varies at every tunneling event. However, we have theoretically confirmed that
waiting time decreases to a value far smaller than to (or ∆t/to → 0) as resis-
tance R increases. We can consider normalised waiting time to be 0 if we use a
sufficiently large resistance.

3.2 Simulating a single-electron oscillator
The following is an outline of the procedure of the Monte-Carlo simulation for

single electron circuits used in this research. The single-electron oscillators are
coupled to the neighboring each other though capacitors. This is in part an excerpt
from [1]. Consider a circuit consisting of tunneling junctions (or tunneling ca-
pacitors), coupling capacitors, resistors, and biasing voltage sources. The internal
state of the circuit is expressed by a set of charges on the nodes in the circuit. In
the following, ’state’ means this node-charge set. The voltage of each node can be
calculated from the state.

To simulate the time-dependent behavior of the circuit, preset a time interval ∆t

for iteration; ∆t is used to calculate the change in node charge caused by current
flowing between bias voltages and nodes through resistors. The value of ∆t

determines time resolution of simulation. A small ∆t increases the accuracy of
simulation but requires a long computing time, resulting in a trade-off between
the simulation time and precision. First, set time to 0 and give an initial charge to
each node. Then simulate the circuit operation as follows.

Step 1: Update charge on each node. The updated charge qi for node i is given
by qi = qi0 + (Vbi − Vi)∆t/Ri, where qi0 is the node charge before updating, Vbi

is the bias voltage applied to node i through resistance Ri, and Vi is the voltage of
node i. The state of the circuit changes from (q10, q20, q30, ...) to (q1, q2, q3, ...).
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Step 2: Compute electrostatic energy E0 (the sum of electrostatic energy of the
tunneling junctions and coupling capacitors) for current state (q1, q2, q3, ...). Then
enumerate all possible subsequent states and compute the electrostatic energy Ei

for each subsequent state i. (Subsequent state i means a state into which the
current state can be transformed by an electron tunneling between node i and the
ground. If the number of the tunnel junctions is N, there are 2N possible
tunnelings and therefore 2N subsequent states.)

Step 3: Compute the energy difference ∆Ei(= E0 − Ei) for each subsequent
state. Using the value of ∆Ei, calculate the waiting time for each tunneling event
corresponding to each subsequent state. The waiting time τi is given by 1

Γi
ln 1

γ

where γ is a uniform random number (0 < γ < 1) generated for each tunneling
event, and Γi is the mean tunneling rate (the mean number of electrons that tunnel
in one second) given by ∆Ei

e2RT 1−exp(−∆Ei/kBT ) , where RT is the tunneling
resistance of the tunneling junction, kB is the Boltzmann constant, e is the
elementary charge, and T is temperature.

Step 4: After calculating the waiting time τi for all possible tunnelings, take the
shortest waiting time τ , and compare it to ∆t.

(i) If τ > ∆t, no tunneling occurs. Put time forward by ∆t and return to Step 1
to repeat the iteration. (ii) If τ ≤ ∆t, the tunneling event corresponding to τ

occurs. Cancel the operations in Step 1 and recalculate the updated charge on
each node, using τ instead of ∆t. The updated charge is given as
qi = qi0 + (Vbi − Vi)τ/Ri − e for the node that receives an electron (tunneling)
from the ground, or as qi = qi0 + (Vbi − Vi)τ/Ri + e for the node that sends an
electron (tunneling) to the ground, and as qi = qi0 + (Vbi − Vi)τ/Ri for all the
other nodes. Then, put time forward by τ and return to Step 1 to repeat the
iterations.
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【Part I】

Introduction to nonlinear
dynamics of single-electron

networks





This chapter investigates non-linear behavior of coupled single-electron systems.
In the first part, we focus on the terminology required in investigating the
operation of non-linear systems. This is followed by detailed results on
dynamical systems consisting of single-electron devices.
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4
Dynamical Systems

A dynamical system is a system that evolves with time from a given initial state
as defined by a certain rule. This rule is defined either by a set of difference
equations or differential equations or a combination of both. Dynamical systems
can be classified into two: discrete-time and continuous-time dynamical systems,
according to how their dynamics are defined. In this chapter, we will start by
giving details on discrete-time and continuous-time dynamical systems, then shift
our focus to some useful terminology in describing dynamical systems.

4.1 Discrete-time Dynamical Systems
This is a system in which the evolution of system variables takes place in discrete
time. The present state (xn+1) of the system is determined by the preceding
values of the system variables. That is

xn+1 = f(xn, xn−1, ..., x1, x0)
�� ��4.1

A widely studied discrete-time dynamical system is the discrete logistic system,
whose dynamics is defined by the difference equation

xn+1 = αxn(1 − xn)
�� ��4.2

for 0 ≤ x ≤ 1, where α is a parameter.
To calculate the system’s dynamics, choose a random initial state x0, and
calculate the values of xn+1, according to Eq. 4.2. Depending on the parameter,
the system’s stable state changes from a steady state as in Fig. 4.1 (a) for α = 2.9,
to oscillating between 4 stable states (i.e. xn+1 repeats every 4 iterations) in
Fig. 4.1 (b), for α = 3.5, and for α > 3.56 it oscillates in an irregular, aperiodic
manner, never settling down to a periodic state (chaotic dynamics). A diagram
showing the number of stable points for a wider range of bifurcation parameter α

(2.6 < α < 4) is shown in section 4.5.
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Figure 4.1: Logistic map: gradual evolution of xn, plotted for bifurcation param-
eter α = 2.9 for (a), α = 3.5 for (b) and α = 3.7 for (c).
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Figure 4.2: Strange attractor defined by Lorenz equations, with parameters set to
σ = 10, b = 8/3 and r = 28.

4.2 Continuous-time Dynamical Systems
This class of dynamical systems is governed by ordinary differential equations,
evolving in continuous time. The variables of the system evolve as

dX(t)
dt

= F (X(t)).
�� ��4.3

An example of continuous-time dynamical system is the Lorenz map, a
3-dimensional system. It is described by Lorenz equations:

dx
dt = σ(y − x)
dy
dt = rx − y − xz
dz
dt = xy − bz,

�� ��4.4

where σ, r and b ≥ 0 are parameters. This system portrays highly erratic
dynamics, over a wide range of parameters. The stable points of the system
oscillate irregularly, never repeating, but remain in a bounded region in a x-y-z
space. The Lorenz system is renowned for its dependence on the initial
conditions. Fig. 4.2 shows a trajectory obtained by setting the system parameters
to σ = 10, b = 8/3 and r = 28, for a sample set of inital conditions
x(0), y(0), z(0).
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Trajectory of oscillation

P

xk+n

xk+1

xk+2

xk

xk=S(xk)

Figure 4.3: Poincare section.

4.3 Attractor
A system could settles down to some stable state which could be defined by a
fixed point, or a trajectory. Such a set of points describing the final state, to which
all the neighboring trajectories of an oscillation converge is referred to as the
attractor of oscillation.

4.4 Poincaré Section
The Poincaré section is utilized in analyzing dynamics of an N-dimensional
system, by using a transversal hyper-surface of a lower (N-1)-dimension, where
N ≥ 3, projected in such a way that all the trajectories of (or sections of
trajectories describing) the oscillation flow through the surface (see Fig. 4.3). In
particular, Poincaré sections are useful in studying the qualitative aspect of the
flow of periodic trajectories of an oscillation. Consider a trajectory emerging
from an initial state x0 on the Poincaré section. By following the trajectory, and
plotting all the points at which it intersects the surface, you obtain the Poincaré
map. If x ∈ S denotes the kth intersection, the Poincaré map can be defined by

xk+1 = S(xk).
�� ��4.5
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Figure 4.4: Bifurcation diagram of the logistic map, for 2.6 < α < 4

4.5 Bifurcation
The dynamics of a dynamical system depend on the system’s parameters. By
changing the parameters, the stability of the system also evolves to portray a
number of dynamics. This includes qualitative change in the stability of a system:
topological structure of the trajectory (attractor) of oscillation, or the number of
stable states. Such a change is referred to as bifurcation.
As an example, we take the discrete logistic system (sec. 4.1), and study its
stability, keeping our attention to how the number of stable states increase or
decrease with increase in the system parameter α.
By plotting these stable points, against the respective values of parameter α, a
bifurcation diagram showing the qualitative behavior of the dynamical system is
obtained.
As the parameter increases from 2.6, we observe an increase in the number of
stable points from 1 for parameter setting of α < 3 → 2 (3 ≤ α < 3.449) →
4 (3.449 ≤ α < 3.544) → 8 (3.544 ≤ α < 3.564) and so forth. At α > 3.56, the
system becomes chaotic, and possesses a considerably large number of stable
points.
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4.6 Summary
In this chapter, we restricted ourselves to a brief explanation of terminology in
describing and analyzing non-linear behavior of dynamical systems. For a
comprehensive explanation, we would refer the reader to Nonlinear Dynamics

and Chaos [1] and Chaos in dynamical systems [2].
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5
Coupled Oscillator Systems

5.1 Introduction
Single-electron oscillators exhibit complex dynamics when coupled with one
another. As an example of such coupled oscillators, this chapter describes the
structure and behavior of two dynamical systems consisting of two
single-electron oscillators capacitively coupled with each other to form a double
oscillator and two double-oscillators coupled together to form a quardruple
oscillator system. This chapter gives details on the configuration and wide variety
of nonlinear dynamics of such a system. To illustrate the dynamics, attractors of
oscillation plotted on phase diagrams, bifurcation diagrams obtained by varying
the system’s parameter are utilized.

5.2 Double Oscillator System

5.2.1 Circuit configuration and operation

The double-oscillator circuit consists of two single-electron oscillators coupled
with each other through a capacitance. Fig. 5.1 shows the circuit configuration.
One oscillator consists of a resistor R1 and a left tunneling junction Cj biased
with a positive voltage Vdd. The other oscillator consists of a resistor R2 and a
right tunneling junction Cj biased with a negative voltage −Vdd. The two
oscillators are coupled with each other at nodes 1 and 2 through a coupling
capacitor C. The variables of the circuit are node voltages V1 and V2. The
threshold of the junction voltages for tunneling is ±(C + Cj)/(2Cj(2C + Cj))
for this circuit, and electron tunneling occurs through the corresponding junction
if either of the node voltages reaches the threshold.
Coupled through capacitor C, the two oscillators interact with each other to
produce synchronization and entrainment. Figure 4 depicts an example of the
operation on a V1-V2 phase plane. Node voltages V1 and V2 change continuously
as the junction capacitances are charged through the resistances. When either of
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Coupling capacitor

Node 2Node 1

Tunneling junction

C

Vdd Vdd

R2
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Figure 5.1: Double oscillator system consisting of two tunneling cells coupled
through capacitance C and biased with positive and negative power voltages Vdd

and −Vdd.

the node voltages reaches the threshold, tunneling occurs through the
corresponding junction, and this causes a discrete change in both node voltages.
For instance, the trajectory of oscillation starts at point 1, proceeds rightward to 2,
then it jumps discontinuously to 3 because of electron tunneling in the left
junction, proceeds to 4, jumps to 5 (tunneling in the left junction, followed by
immediate tunneling in the right junction), proceeds to 6, jumps to 7 (tunneling in
the right junction), proceeds to 8, and finally returns to 1 (tunneling in the left
junction, followed by immediate tunneling in the right junction). Thus, the circuit
produces a periodic oscillation in which discrete-time and continuous-time
dynamics coexist.

5.2.2 Simulating the dynamics of the Double-Oscillator circuit

To express the dynamics of the coupled oscillators, the variables and parameters
were rewritten by using equations,

u =
2C0

e
V1, v =

2C0

e
V2, C0 =

(2k + 1)
(k + 1)

Cj , k =
C

Cj
,

α =
R2

R1
, β =

2C0

e
Vdd, and t =

time
R1C0

.
�� ��5.1

where, u and v are normalized node voltages, k is the coupling coefficient
(k ≥ 0), α is the resistance ratio (α > 1), β is normalized bias power voltage
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Figure 5.2: Schematic trajectory of the oscillation in the coupled oscillators, plot-
ted on a V1-V2 phase plane. Dashed lines show a discrete change caused by tun-
neling.

(β > 0), and t is normalised time. The dynamics of the circuit, which depend
entirely on the dimensionless parameters α, β, and k, can be expressed with a
trajectory on a u-v phase plane. Taking into account the Coulomb blockade, the
following equations for the dynamics were obtained. The normalised threshold
voltage for tunneling is ±1. The operation is continuous-time in a range of
−1 < u < 1 and −1 < v < 1 and is given by differential equations,

du

dt
= (β − u) − k

k + 1
1
α

(β + v),
�� ��5.2

dv

dt
=

k

k + 1
(β − u) − 1

α
(β + v).

�� ��5.3

When either u or v reaches the threshold ±1, tunneling occurs in the
corresponding junction and node voltages u and v change discretely by ∆u and
∆v,
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where

∆u = −2 and ∆v = − 2k

k + 1
if u reaches 1,

∆u = 2 and ∆v =
2k

k + 1
if u reaches − 1,

∆u = − 2k

k + 1
and ∆v = −2 if v reaches 1,

∆u =
2k

k + 1
and ∆v = 2 if v reaches − 1.

�� ��5.4

Attractors on the u-v phase plane

The operation of the coupled oscillators for sample sets of parameters was
simulated and the trajectory of the oscillation was plotted on u-v phase planes.
The trajectory depended on initial values of u and v but was attracted, as time
passed, to a set of curves (i.e., the attractor of the oscillation) independent of the
initial values. Figures 5.3 (a) through 5.3 (d) show the attractor for α =

√
10 and

β = 3, with coupling coefficient k as a parameter. As the figures show, a slight
change in the coupling coefficient produces a drastic change in oscillation cycle.
The flow of the attractor can be simply expressed with the values of v at which
segments of the attractor meet line u = 1. For instance, the flow in Fig. 5.3 (b)
can be expressed with a sequence of 17 values of v. This is one kind of Poincaré
map, and no information is lost in terms of the qualitative behavior of the
dynamics. The set of these v values were used to draw bifurcation diagrams in
the next section. The number of these v values are referred to the degree of
periodicity in oscillation.

Effect of the coupling coefficient and the resistance ratio on the dynamics

To come up with a general view of the effect of coupling coefficient k and
resistance ratio α on the dynamics, bifurcation diagrams were drawn by plotting
the set of the v values as a function of k and α. Figure 5.4 shows a bifurcation
diagram with k as a bifurcation parameter. The resistance ratio was set to α = 3
for (a) and α =

√
10 for (b), and the bias power voltage was β = 3 for both

diagrams. At k = 0 (without coupling), the two oscillators in the circuit produced
a self-induced oscillation independent of each other. As coupling coefficient k

increased, the oscillators began to interact with each other to produce entrainment
and synchronized periodic oscillation. Generally speaking, the degree of
periodicity increased with the increase of k. However there were many windows
where the degree of periodicity decreased drastically. The windows appeared
irregularly and repeatedly.
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5.2. DOUBLE OSCILLATOR SYSTEM

Figure 5.3: Attractors of the oscillation plotted on a u-v plane, simulated with
coupling coefficients (a) k = 0.5 (3-cycle oscillation), (b) k = 1.7 (19-cycle), (c) k

= 2 (58-cycle), and (d) k = 3.5 (13-cycle). The resistance ratio α =
√

10 and bias
power voltage β = 3 for all figures.
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Figure 5.4: Bifurcation diagram with coupling coefficient k as a parameter. Re-
sistance ratio is (a) α = 3 and (b) α =

√
10. Power voltage β = 3 for both

diagrams.

As a second parameter of this circuit, the resistance ratio α was considered and
the change of the system dynamics with increase in α were studied. The results
are shown in Fig. 5.5.The coupling coefficient and the power voltage were set to
k = 0.2 for (a) and k = 1 for (b), with β = 3 for both diagrams. The degree of
periodicity increased as α increased, but windows also appeared repeatedly. In
each window, the degree of periodicity is equal to the nearest integer value of α.

5.3 Quadruple Oscillator System
This section describes, in detail, the structure and behavior of a
quadruple-oscillator system. Similarly to the double oscillator described in the
previous section, the quadruple system produces a multi-periodic oscillation.
However, unlike the double system, whose oscillation settled to the same
trajectory –a single attractor–independent of the initial state it starts from, the
quadruple system has a number of possible attractors and takes one of them
determined by initial conditions of its 4 nodes.
The sections to follow, elaborate this more thoroughly with the use of phase
diagrams and diagrams showing basins of attraction for different initial
conditions and parameter settings.
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Figure 5.5: Bifurcation diagram with resistance ratio α as a parameter. The cou-
pling coefficient is (a) k = 0.2 and (b) k = 1. Power voltage β = 3 for both
diagrams.

5.3.1 Structure of the Quadruple-Oscillator system

Coupling two double-oscillator circuits will produce a new system with more
complex dynamics. Figure 5.6 shows such a quadruple-oscillator system
consisting of four oscillators—two are positively biased with Vdd and the other
two are negatively biased with −Vdd. The oscillators are connected in a ring
through coupling capacitors C so that electron tunneling in one oscillator will
induce tunneling in the two adjacent oscillators. The variables of this system are
four node voltages V1, V2, V3, and V4.
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Vdd Vdd

VddR1
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R2

R2

C
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C
Cj

Cj Cj
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34

V1
V2

V3V4

Cj

Vdd

Figure 5.6: Quadruple oscillator circuit consisting of two double-oscillator circuits
coupled through capacitors C.

5.3.2 Expressing the system dynamics

To express the dynamics of this circuit, the variables and parameters were
rewritten as

ui =
2CsVi

e
(i = 1−4),

Cs =
(8k2 + 6k + 1)Cj

(2k2 + 4k + 1)
,

k =
C

Cj
, α =

R2

R1
,

β =
2Cs

e
Vdd, and t =

time
R1Cs

,
�� ��5.5

where, ui is the normalized voltage of the ith node, k is the coupling coefficient
(k ≥ 0), α is the resistance ratio (α > 1), β is the normalized bias voltage
(β > 0), and t is normalised time.
With this rewriting, the dynamics of the system were calculated . In a range of
−1 < ui < 1 (i = 1-4), the system dynamics are given by differential equations
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5.3. QUADRUPLE OSCILLATOR SYSTEM

du1

dt
= −2(γ + ζ − κ − η)k2 + (−4κ + γ + ζ)k − κ

(4k + 1)(2k + 1)
du2

dt
= −2(γ + ζ − κ − η)k2 + (4γ − κ − η)k + γ

(4k + 1)(2k + 1)
du3

dt
= −2(γ + ζ − κ − η)k2 + (−4η + ζ + γ)k − η

(4k + 1)(2k + 1)
du4

dt
= −2(γ + ζ − κ − η)k2 + (4ζ − κ − η)k + ζ

(4k + 1)(2k + 1)
, �� ��5.6

where

γ =
β + u2

α
, ζ =

β + u4

α

κ = β − u1, η = β − u3.
�� ��5.7

When any of node voltages ui reaches the threshold value of ±1, an electron
tunnels at the corresponding node, and this leads to a discrete change in node
voltages of the four nodes of the system. For instance, if u1 reaches +1, tunneling
occurs in oscillator 1 from the ground to node 1. This produces a discontinuous
change in node voltage given by difference equations

∆u1 = −2
�� ��5.8

for node 1,

∆u2 and ∆u4 = − 2k(2k + 1)
2k2 + 4k + 1

�� ��5.9

for the two adjacent nodes 2 and 4, and

∆u3 = − 4k2

2k2 + 4k + 1

�� ��5.10

for the diagonally positioned node 3. In case u1 decreases to −1, electron tunnels
from node 1 to the ground, and the change is positive for every node voltage.
Tunneling at any other node leads to a similar change in the four node voltages.

5.3.3 Simulation results - basin diagrams -

The operation of the quadruple-oscillator circuit was simulated for various
parameter settings and found that this system showed multi-periodic oscillation
with a number of possible attractors instead of a single attractor. The attractor the
system actually took was determined by the initial values of the four node
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voltages ui (i = 1-4); in other words, some initial conditions evolve to a certain
attractor, and other initial conditions evolve to a different attractor.
To understand the relationship between the initial node conditions of this system
and the attractor of oscillation, we need to draw four-dimensional basin diagrams
for various parameter settings.
Figure 5.7 shows an example of a simplified two-dimensional basin diagram for a
sample parameter setting of k = 1, α =

√
10, and β = 3. It was drawn as

follows:
•step 1: The attractor of oscillation was calculated and plotted on a
four-dimensional u1-u2-u3-u4 phase space for a given initial condition
(u01, u02, u03, u04), where u0i are the initial values of node voltages ui. For
simplicity, the initial voltages of nodes 1 and 3 (and initial voltages of nodes 2
and 4) were assumed to be the same in amplitude but inverse in polarity: i.e.,
u03 = −u01 and u04 = −u02. Therefore initial conditions can be plotted on an
u1-u2 plane.
•step 2: The calculated attractor was orthogonally projected onto the u1-u2 plane
to reduce its dimensions. The projected attractor consisted of a number of curve
segments on the u1-u2 plane. Figures 5.7(a) and 5.7(b) show the projected
attractor for two sample initial conditions.
•step 3: Steps 1, 2 and 3 were repeated many times to obtain projected attractors
for various initial conditions.
•step 4: The basins of attraction for the projected attractors were depicted on a
u1-u2 plane.
The resultant basin diagram is Fig. 5.7 (c). The sample system has three possible
attractors; the first is shown by Fig. 5.7 (a), the second is shown by Fig. 5.7 (b),
and the third is similar to Fig. 5.7 (b) but the number of curve segments is
somewhat smaller. The attractor actually taken was determined by the initial
conditions: that is, initial conditions in region A in Fig. 5.7 (c) lead to the first
attractor (Fig. 5.7 (a)), initial conditions in region B lead to the second attractor
(Fig. 5.7 (b)), and initial-conditions in region C lead to the third attractor.
Figure 5.8 shows the whole of the basin diagram on a u1-u2 plane (−1 < u1 < 1
and −1 < u2 < 1). The shaded regions are the basins of the first attractor
(Fig. 5.7 (a)), and non-shaded regions are the basins of the second and the third
attractors (these two are labyrinthine and undistinguishable on the figure).
Figure 5.9 shows another example, calculated with a parameter setting of
k = 3.6, α =

√
10, and β = 3. Also three possible attractors exist. The shaded

regions in Fig. 5.9(a) are the basins of one attractor (Fig. 5.9(b)) and non-shaded
regions are the basins of the other two attractors (one is shown in Fig. 5.9(c)).
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Figure 5.7: Attractors and basins of the quadruple-oscillator circuit, simulated
with a parameter setting of k = 1, α =

√
10 and β = 3. (a),(b): two of the three

attractors projected onto a u1-u2 plane, and (c) basin for the attractors. Regions A,
B, and C are the attracting basins for the first (Fig. 5.7(a)), the second (Fig. 5.7(b))
and the third attractors respectively.
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Figure 5.8: The whole of the basin diagram for a parameter setting of k = 1,
α =

√
10 and β = 3. Shaded regions are the basins of the first attractor (a), and

non-shaded regions are the basins of the second (b) and the third attractors.

5.4 Summary
The first part of this thesis focused on analyzing the non-linear dynamics of
coupled single-electron devices. Understanding the principles and the non-linear
dynamics of such devices is inevitable in creating novel architectures for the next
generation of LSI systems consisting of single-electron devices. To accomplish
this, we proposed a basic circuit– the single-electron oscillator, with which we
designed two sample dynamical systems: a double- and a quadruple-oscillator
system and illustrated their rich dynamics with phase diagrams, bifurcation
diagrams and basins of attraction diagrams. Though the structure of these
systems is very simple, they showed a wide variety of non-linear dynamics.
Through computer simulations, we confirmed that the complexity of system’s
operation increases with the number of coupled oscillators. We observed that
1© a single oscillator shows only simple relaxation oscillation, when biased to a

voltage higher than the threshold,
2© the double-oscillator system produces multi-periodic oscillation with a single

attractor, and
3© the quadruple oscillator system also produces multi-periodic oscillation but

has a number of possible attractors and takes one of them, as determined by the
initial conditions.
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【Part II】

LSI architectures employing
structural properties of
single-electron devices





This part focuses on how to utilize the minute sizes of single-electron devices to
applications that require high spatial resolutions. As an example we propose a
two-dimensional photon sensor that can detect the position of incoming photons
with a spatial resolution of a few nano meters. The sensor also actively uses
capacitive coupling between single-electron devices to propagate signals (in form
of an electron tunneling wave) amongst individual units within itself. By
detecting the arrival time at the periphery of the device network, we can precisely
determine the position at which the photon entered the device.
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6
Two-dimensional photon position

sensor

6.1 Introduction
A promising area of research in microphotonics is the development of solid-state
sensors that can detect the position of incident single photons with high spatial
resolution. This chapter discusses a two-dimensional photon sensor consisting of
single-electron integrated circuits.
Detecting the position of incident photons is a fundamental, important process in
spectroscopic and imaging measurement in physical, chemical, and biological
sciences. The existing device used for this purpose is the microchannel plate
photomultiplier (MCP) [1], [2], [3] —a two-dimensional array of millions of
small photomultiplier tubes, each tube with a diameter of several micrometers.
The MCP is a superior device with a high sensitivity and a large signal-to-noise
ratio. Its spatial resolving power, however, is determined by the channel diameter
(or pitch: center-to-center spacing) which is typically in the range of 10 µm. A
MCP consists of a bundle of fine glass capillaries that conduct incoming electrons
from the input plate toward the output. A cross section of a MCP is show in
figure 6.1 (a), while its operation principle is shown in figure 6.1 (b). As shown in
figure 6.1 (b), an incoming electron enters a channel, and is accelerated along the
channel by the accelerating voltage V . The incoming electron induces secondary
electrons on hitting the channel inner wall. The secondary electrons are also
accelerated and induce more secondary electrons producing a cascade of
secondary electrons that propagates toward the opposite face of the MCP plate.
This amplifies the original input (few electrons) by several orders. The output
signal is detected either by using a metal anode measuring total current or in
some applications each channel is monitored independently with a phosphor
screen to produce an image.
Far higher resolution can be achieved using an array of single-electron tunneling
junctions. A single-electron tunneling junction can operate as a minute photon
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Figure 6.1: Microchannel Plate photomultiplier: (a) Cross section showing a bun-
dle of microchannels (b) Operation principle: incoming photon strikes the mi-
crochannel channel inner wall, producing a secondary electrons which in turn hit
the channels walls producing more secondary electrons as the are accelerated along
the channel.

detector based on the photo-induced charging effect (see [20] , [21] and [6] for
details). Therefore, arranging many tunneling junctions into an array will create a
novel two-dimensional position sensor for photons. Junction arrays with a
tens-nanometer arrangement pitch can be fabricated using existing nano process
technologies, so one can develop a position sensor with a high resolving power of
0.01-0.1 µm—a far higher resolution than that of MCPs.
The challenge in the development of this sensor is related to the accurate
determination of the two-dimensional position of incident photons. Unlike
conventional devices, it is difficult to lay row-column access lines through closely
arranged, minute tunneling junctions. Even if one could do that, the large
parasitic capacitance of the access lines would impede the single-electron
operation of the tunneling junctions.
To solve this problem, we developed a method of detecting positions that makes
use of the propagation of tunneling waves in a tunneling junction array. The
proposed photon sensor consists of many single-electron tunneling oscillators
regularly arrayed on a plane, where each oscillator is coupled with neighboring
oscillators. If a photon hits and excites an oscillator, photo-induced tunneling
occurs in the oscillator. This induces tunneling in neighboring junctions, and the
tunneling events successively propagate, like a wave, in all directions to reach the
periphery of the sensor. By measuring the arrival time of the wave at several
points on the periphery, one can determine the starting point of the wave and
therefore know the position at which the photon entered the sensor.
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Figure 6.2: Single electron oscillators biased with (a-(i)) positive voltage Vdd and
(a-(ii)) negative voltage −Vdd, and (b) monostable, or one-shot, operation of posi-
tively biased (solid line) and negatively biased (dashed line) oscillators.

In the following sections, first the structure of the proposed sensor is described.
Then its operation is illustrated using the results of Monte-Carlo based computer
simulation. Tunneling wave’s generation, propagation, and arrival at the device
periphery are simulated. We show that the starting position of the wave can be
determined using the arrival time of the wave.

6.2 Structure of sensor device
To make the photon position sensor, we use a network of single-electron
oscillators. A single-electron oscillator, shown in Fig. 9.8, is a simple circuit
consisting of a tunneling junction Cj and a high-resistance resistor R connected
in series at a node and biased with a positive voltage Vdd (Fig. 9.8(a-(i))) or a
negative voltage −Vdd (Fig. 9.8(a-(ii))). It operates as a relaxation oscillator at
low temperatures at which the Coulomb-blockade effect occurs. The oscillator is
astable if Vdd > e/(2Cj) (e is the elementary charge) and monostable if
Vdd < e/(2Cj) (see [18] and [17] for detailed explanation). The node voltage of
the monostable oscillator is equal to the bias voltage in an equilibrium state, and
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Figure 6.3: Photon-position sensor consisting of two-dimensional network of
single-electron oscillators: (a) capacitive coupling of positively biased and neg-
atively biased oscillators and (b) sensor device consisting of coupled-oscillator
network. Closed circles and open circles represent the node of positively biased
and negatively biased oscillators.

no change occurs under that condition. Upon application of a triggering signal,
such as an incidence of photons, the Coulomb blockade is broken off, and
electron tunneling occurs through the tunneling junctio n. The node voltage of a
positively biased oscillator drops by e/Cj , as shown in Fig. 9.8(b), because of
tunneling from the ground to the node. The node voltage then gradually increases
to return to Vdd as junction capacitance Cj is charged through resistance R. In a
negatively biased oscillator, the node voltage jumps by e/Cj because of tunneling
from the node to the ground, and then gradually decreases to return to −Vdd .
The structure of the proposed sensor consisting of monostable oscillators is
shown in Fig. 9.10. It consists of a network of monostable single-electron
oscillators—positively biased and negatively biased oscillators—regularly
arrayed on a plane in a checkered pattern. Each positively biased oscillator is
connected to four negatively biased oscillators by means of coupling capacitors.
Similarly, each negatively biased oscillator is connected to four positively biased
oscillators. The unit length of the network, or the arrangement pitch of oscillators,
could be tens of nanometers for tunneling junction arrays that are made using
existing nanoprocess technologies. The network, or the sensor device, is in a
stable uniform state as it stands. Once tunneling is induced in an oscillator by an
incident photon, the occurrence of tunneling events is transmitted from the
oscillator to other oscillators in the following manner (see [9] for details). For
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example, if electron tunneling occurs in a positively biased oscillator, the
oscillator changes its node voltage from positive to negative, and this induces,
through the coupling capacitors, electron tunneling in neighboring negatively
biased oscillators. The negatively biased oscillators consequently change their
node voltages from negative to positive, and this induces electron tunneling in
neighboring positively biased oscillators. In this manner, the occurrence of
tunneling events is transmitted in the network like a wave—hereafter, this
consecutive transfer of tunneling events (wave) is referred to as a tunneling wave.
To show this operation simply, the transmission of a tunneling wave is illustrated
with simulated results for a one-dimensional connection of oscillators given in
Fig. 9.12(a). Electron tunneling was induced in the leftmost oscillator A0 by a
triggering signal, and the chain reaction of tunneling started and proceeded to the
right along the row of oscillators. The successive drops in the node voltages,
shown in Figs. 9.12(b) and (c), indicate this chain reaction, which occurred in the
following manner. When tunneling occurred in the positively biased oscillator
A2, its node voltage changed from positive to negative (see Fig. 9.12(b)). This
induced tunneling in the neighboring negatively biased oscillator A3. The node
voltage of A3 therefore changed from negative to positive, and this induced
tunneling in positively biased oscillator A4. This way, a tunneling wave could
propagate rightward through the oscillators.
A time lag or a waiting time exists between when the voltage across each junction
exceeds the tunneling threshold and when tunneling actually occurs in the
junction. This is caused by the stochastic nature of tunneling and determines the
velocity of wave propagation. The waiting time has probabilistic fluctuations in
every tunneling event (e.g., see the difference between t1, t2, and t3 in
Fig. 9.12(b)), and consequently, the wave velocity fluctuates at every moment
around its mean value. The effect of this fluctuation, however, diminishes as the
number of oscillators increases (see section 6.6).

6.3 Propagation of tunneling waves
In the two-dimensional network (Fig. 9.10(b)), the tunneling wave propagates in
all direction and spreads across the network to form a circular wave. We
simulated the wave propagation in a network consisting of 501 × 501 positively
biased oscillators interleaved with a 500 × 500 array of negatively biased
oscillators in a checkerboard pattern. In the calculations, we assumed that each
oscillator is connected to four neighboring oscillators inside the network, three
oscillators on the four sides, and two oscillators at the four corners.
The result is shown in Fig. 9.13. To visualize the time development of a tunneling
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Figure 6.4: (a) One-dimensional connection of oscillators A0, A1, A2, ....; (b) Waveform of node

voltage plotted for positively biased oscillators A2-A12 (solid lines) and negatively biased oscillator A3

(dashed line); (c) waveform for every fortieth oscillator. Tunneling is induced in leftmost oscillator A0

and transmitted rightward along the row of oscillators with delay. Drop in each waveform corresponds

to tunneling in the oscillator. This was simulated with a set of parameters Cj = 10 aF, C = 2 aF, R = 400

MΩ, tunneling junction conductance = 1 µS, Vdd = 5.5 mV, −Vdd = −5.5 mV, and zero temperature.
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Figure 6.5: Expanding circular wave in the network. Snapshots for six time steps,
with time t after the start of the wave, simulated with a set of parameters Cj = 10
aF, C = 2 aF, R = 400 MΩ, tunneling junction conductance = 1 µS, Vdd = 4.8 mV,
−Vdd = −4.8 mV, and zero temperature.
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wave, the node voltage of each positively biased oscillator is shown on a gray
scale: the light shading represents high voltage, and the dark represents low
voltage. In this example, a tunneling wave started at the upper right of the
network (Fig. 9.13(a)), expanded in all directions in the form of a circular wave
(Figs. 4(b) and (c)), and reached corners A, B, C, and D (Figs. 9.13(d)-(f)). The
front of the wave is the region where tunneling just occurred, and therefore, the
node voltages of oscillators are at the lowest negative value (represented by the
darkest shading). The front line of the wave is uneven or irregular because the
velocity of the traveling wave fluctuated in each direction throughout the process
because of the stochastic waiting time of tunneling. The mean velocity depends
on the circuit parameters and was 100 unit lengths per 12.52 ns (for ’unit length’,
see Fig. 9.10(b)) for the parameter set given in the figure caption.
On the arrival of the wave, the positively biased oscillator at each corner
produced tunneling and changed its node voltage from positive to negative.
Waveforms of the node voltages are plotted in Fig. 9.7—the results of the wave
propagation shown in Fig. 9.13. The time when the voltage dropped indicates the
time when the wave reached the corner of the network.
After the wave passed, the node voltage of each oscillator gradually increased to
return to its initial value. This is represented by light shading behind the wave
front. If a photon hits again, the same operation will be repeated.

6.4 Detecting the starting position of tunneling
waves

From the wave’s arrival time at the corners, we can know the starting position of
the wave as follows (see Fig. 6.7). Let us assume that a photon hits the sensor
network ABCD at a position P. Then a tunneling wave appears at P and spreads
out through the sensor at a velocity of v0. As time passes, the wave front expands
in all directions, as indicated by F1-F4, and reaches the periphery of the sensor.
We observe the arrival of the wave at corners A, B, C, and D and measure the
wave’s arrival time at each point. If the arrival time was t0 at point A and t0 + t1

at point B, we can consider that position P is on the locus S1 of points where the
difference in the distance to points A and B is v0t1. That is, P is on hyperbola S1
with foci A and B. Similarly, position P is also on hyperbola S2 with foci B and
C. Therefore, we can determine position P as the point of intersection of the two
hyperbolas.
There are six possible sets of foci (AB, AC, AD, BC, BD, and CD), so we can
draw six hyperbolas from the data of arrival time at the four corner points. All the
hyperbolas intersect at one point if the wave velocity is constant, and therefore,
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network: the result of the wave propagation shown in Fig. 9.13. The trigger was
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C.
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the two hyperbolas suffice to determine the position of P. In our device, however,
wave velocity is not constant but fluctuates a little at every moment.
Consequently, not all the hyperbolas intersect at one point, and there can be 15
intersection points at maximum (i.e., combination 6C2 = 15). Therefore we
determined the position of P by calculating the mean coordinate of the 15
intersection points.
Taking the example of Fig. 9.13, we calculated the starting position of the wave
from the data of the wave’s arrival time given by Fig. 9.7, and compared the
calculations with the actual starting position. In the calculations, we set the
coordinates of corners A, B, C, and D to (0,1), (1,1), (1,0), and (0,0). In this
coordinate system, the starting position of the wave in Fig. 9.13 is (0.8,0.7). In
the calculation results, six hyperbolas with their 15 intersection points are shown
in Fig. 6.8. The mean coordinate of the intersection points was (0.799,0.701),
which was approximately consistent with the actual starting position. This way,
we can know the starting position of tunneling waves in the sensor, and therefore,
can detect the position of incident photons.
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Figure 6.9: Structure of fabricated device. (a) Conceptual network of single-
electron devices (b) Micrograph of a quantum-dot-network device fabricated at the
Research Centre for Integrated Quantum Elecronics (RCQIE) at Hokkaido univer-
sity. (c) Detailed structure of the fabricated device consisting of the quantum dot
layer, and coupling capacitances.

6.5 Toward actual devices
To develop our idea into actual devices, we have to deal with two matters of
importance; that is, constructing a large-scaled array of coupled single-electron
oscillators, and amplifying a small output signal from a single-electron oscillator.
The key to constructing the device is forming the arrangement of single-electron
oscillators with their coupling arms and tunneling junctions at an arrangement
pitch of tens of nanometers. One of us previously presented and demonstrated a
process technology that can be used to fabricate such an array structure [10]. This
technology uses self-organized crystal growth based on selective-area
metalorganic vapor-phase epitaxy (see [32] for this epitaxy method). Using this
technology, we can form an array of semiconductor dots with coupling arms and
tunneling junctions in a self-organizing manner (Fig. 6.9(b)). The next step is to
create high-resistance resistors on the nanodots. This could be achieved through
two methods. One way is to use a multiple-tunneling junction, or a series of many
tunneling junctions, (as described in [10]), using the same fabrication technology
as the quantum dot array. Another possible method for realizing the resistance
layer is by depositing a layer of high-resistive materials such as semi-insulating
polycrystalline silicon (called SIPOS) [12] on the quantum dot layer.
Amplifying the output signal is the other matter of importance. The arrival of a
tunneling wave produces a change in the node voltage of the single-electron
oscillator on each corner. However, we would not be able to retrieve the output
signal directly from the corner oscillator. This is so because a single junction has
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Figure 6.10: Output amplifier consisting of quadrant network of single-electron
oscillators. Closed circles and open circles in the network represent the node of
positively biased oscillators and negatively biased oscillators. The nodes of pos-
itively biased oscillators on arc QR are connected to an output load through cou-
pling capacitors.

a very small capacitance and therefore cannot send a large enough voltage signal
to an output load that has a far larger capacitance. Therefore, an output amplifier
is indispensable for efficiently driving the output load. A promising method of
amplifying the single-electron signal is by making use of an expansion of
tunneling waves in the single-electron network. A schematic diagram of such an
amplifier is shown in Fig. 6.10. The amplifier consists of a single-electron
network with a quadrant periphery BQR that is connected to corner oscillator B
of the sensor. The amplifier network has the same structure as that shown in
Fig. 9.10(b), and the nodes of the positively biased oscillators on arc QR are
connected to an output line through capacitors. A tunneling wave generated in the
sensing network reaches corner oscillator B and induces tunneling in the
oscillator. This excites a secondary wave in the amplifier. The secondary wave
expands in the amplifier network and reaches arc QR to induce tunneling in all
oscillators connected to the output line. The oscillators have a large capacitance
in total and therefore can send a large signal to an output load.
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6.6 Effect of fluctuations in waiting time to the
precision of position detection

The velocity of tunneling waves fluctuates around its mean value because of the
stochastic nature of tunneling. However, when a wave travels across many
oscillators, the fluctuation would be averaged and therefore the velocity could be
considered to be almost constant. To confirm this, we simulated wave
propagation along one-dimensional oscillator chains with various number of
oscillators. That is, we simulated transmission time T for a chain with N

oscillators and calculated the wave velocity given by N/T . We repeated this
simulation many times and calculated the probability of occurrence of wave
velocity i.e. probability of the wave velocity taking a certain value.

The results are shown in Fig. 6.11 for N= 10, 50, 100, and500. The fluctuation
in wave velocity decreased as the number of oscillators increased. For example,
the distribution had a 3σ error of 5% for N= 100 and of 1% for N= 500.
Therefore, putting a dummy zone consisting of many oscillators around the
sensor will reduce the fluctuation in wave velocity. The output amplifier, shown
in Fig. 6.10, can be used as the dummy zone, so no additional dummy zone will
be needed in practice.
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6.7 Summary
This chapter proposed a photon position sensor with a high spatial resolving
power. The sensor consists of monostable single-electron devices coupled with
each other through capacitors. Through Monte-Carlo based computer simulations
we confirmed that a tunneling wave can propagate through the network of
oscillators toward the sensors positioned at the peripheries. From the arrival times
at the peripheral sensors, we could accurately determine the starting position of
the tunneling wave—hence the two-dimensional position where the incident
photon hit the sensor. We are now developing the proposed sensor device with
together with the amplifier, using the self-organized crystal growth process
technology.
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【Part III】

Neuromorphic LSI
architectures employing
non-linear properties of
single-electron networks





In the third part of this thesis, a number of bio-inspired LSI architectures are
discussed. The circuit architectures are inspired by information processing
mechanisms in living organisms. As mentioned in the introduction part of this
thesis, emerging research devices suffer from:

• Diverse variations in fabricated device feature sizes, resulting in
heterogeneity in parameters and device characteristics ([1] - [4])

• High sensitivity to internal and external (or environmental) noises
associated with nano scale properties.

Therefore, despite all the appealing features in utilizing nano-electronic devices
in future electronic systems, we have to address and solve a fundamental
question; how can we build reliable systems using error-prone and unreliable
building devices? To address this problem, we consider obtaining hints from
information processing in biological systems. The elementary building blocks of
these systems — the neurons, are sensitive to noises, operate asynchronously
because of differences in their structural properties, and have large time
jitters—that is, they are imperfect and unreliable ([6] - [9])—-but nevertheless
they carry out information processing effectively. Therefore, LSIs created by
obtaining hints from biological systems (Neuromorphic LSIs [10], [11]) are seen
as innovative ways of finding solution to the above mentioned problems facing
nano-electronic devices.
To investigate how we mimic signal processing mechanisms in living systems in
actual LSIs, we first studied how to implement some biological models with
single-electron devices. Based on a well studied retinal edge detection model and
a neuronal motion detection model we proposed simple circuit architectures that
utilize non-linear properties of single-electron devices. To implement the two
circuits with actual devices, we have to solve the problems mentioned above (low
tolerance to noises, and high parameter fluctuations as a result of device
fabrication mismatches). To do so, we employed a bio-inspired approach, where
instead of getting rid of such noises, we subtly employed them in
signal-processing. From the results, we could conclude that indeed utilizing
noises in signal processing could improve signal-to-noise ratios, or fidelity of
signal transmission in both circuits.
Part 3 of this thesis is divided into three chapters. Chapters 7 and 8, discuss
single-electron circuits that are based on well studied biological models. We
investigate ways of implementing such highly parallel information processing
functions with single-electron devices. These include visual motion detection
circuit based on correlation neural model, and edge detection and extraction
circuit based on vertebrate retinal model.
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In chapter 9, we explore the possibility of creating novel circuit architectures with
single-electron devices, by employing environmental (dynamic) noises, and static
noises originating from fabrication mismatches. The circuit architectures
proposed in this chapter are inspired by information coding mechanisms in
biological neural networks that convert analog input signals into spike densities
(digital-pulse streams) in the time domain—pulse density modulation (PDM).
This operation is also referred to 1-bit analog-to-digital conversion, and is often
implemented with ∆ − Σ modulators ([18], [19]). Such converters exhibit
noise-shaping properties (see [6] - [22]) for details on neuronal noise-shaping),
separating signal and noises into low and high frequency bands respectively.
Secondly, we investigate the implication of noises in improving the fidelity with
which a PDM circuit can encode high frequency signals (Chap. 9).

72



References

[1] Bowman, K., Duvall, S., & Meindl, J. (2002). Impact of die-to-die and
within die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration. J. of Solid-State Circuits, 37, 183–190.

[2] Constantinescu, C. Trends and challenges in VLSI circuit reliability. Micro,

IEEE, 23, 14 – 19, 2003.

[3] Jose A. B. F. Future Challenges in VLSI Design. IEEE Computer Society

Annual Symposium on VLSI (ISVLSI’03), 5–7, 2003.

[4] Way, K., & Taeho, K. An overview of manufacturing yield and reliability
modeling forsemiconductor products. Proc. of the IEEE, 87, 1329–1344,
1999.

[5] Calhoun, B.H., Cao, Y., Xi L., Mai, K., Pileggi, L.T., Rutenbar, R.A., &
Shepard, K.L. Digital Circuit Design Challenges and Opportunities in the
Era of Nanoscale CMOS. Proceedings of the IEEE. 96, 343–365, 2008.

[6] Chatterjee, A. Concurrent Error Detection and Fault-Tolerance in Linear
Analog Circuits Using Continuous Checksums. IEEE Transactions on very

large scale Integration (VLSI) Systems, 1, 138–150, 1993.

[7] Shadlen, M.N., & Newsome, W.T. The Variable Discharge of Cortical
Neurons: Implications for Connectivity, Computation, and Information
Coding. J. of Neuroscience, 18, 3870–3896, 1998.

[8] Shint, J.N., Lee, K.R., & Park, S.B. Novel neural circuits based on
stochastic pulse coding and noise feedback pulse coding. Int. J. of

Electronics, 74, 359–368, 1993.

[9] Softky, W.R., & Koch, C. The highly irregular firing of cortical cells is
inconsistent with temporal integration of random EPSPs. J. of Neuroscience,
14, 334–350, 1993.

[10] Douglas, R., Mahowald, M., & Mead, C. Neuromorphic Analogue VLSI.
Annual Review of Neuroscience, 18, 255–281, 1995.

[11] Mead, C., Analog VLSI and neural systems. New York: Addison Wesley,
1989.

[12] Utagawa, A., Asai, T., Hirose, T., & Amemiya, Y. An inhibitory
neural-network circuit exhibiting noise shaping with subthreshold MOS
neuron circuits. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer, E90-A, 2108–2115, 2007.

73



References

[13] Collins, J.J., Chow, C.C., & Imhoff, T.T. Stochastic resonance without
tuning. Nature, 376, 236–238, 2002.

[14] Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty J., & Moss, F.
(1997). Visual Perception of Stochastic Resonance. Phy. rev. lett., 78, 6,
1186–1189.

[15] Oya, T., Asai, T., & Amemiya, Y. Stochastic resonance in an ensemble of
single-electron neuromorphic devices and its application to competitive
neural networks. Chaos, Solitons & Fractals, 32, 855–861, 2007.

[16] Oya, T., Asai, T., Kagaya, R., Hirose, T., & Amemiya, Y. Neuronal
synchrony detection on single-electron neural network. Chaos, Solitons &

Fractals, 27, 887–894, 2007.

[17] Aziz, P.M., Sorensen, H.V., Van der Spiegel, J. An overview of sigma-delta
converters. IEEE Signal Processing Magazine, 13, 61–84, 1996.

[18] Aziz, P.M., Sorensen, H.V., Van der Spiegel, J. An overview of sigma-delta
converters. IEEE Signal Processing Magazine, 13, 61–84, 1996.

[19] Schreier, R., & Temes, G.C. Understanding Delta-Sigma Data Converters.
New Jersey: Wiley-IEEE Press, 2004.

[20] Mayr, C., & Schueffny, R. Applying Spiking Neural Nets to Noise Shaping.
IEICE - Transactions on Information and Systems, E88-D, 1885–1892,
2005.

[21] Shin, J. Adaptation in spiking neurons based on the noise shaping neural
coding hypothesis. Neural networks, 14, 907–919, 2001.

[22] Shin, J. Adaptive noise shaping neural spike encoding and decoding.
Neurocomputing, 38-40, 369–381, 2001.

74



7
Visual motion detection circuits based

on correlation neural networks

7.1 Introduction
This chapter discusses a neuromorphic circuit inspired by motion detection in
insects. Motion detection is an essential task in first levels of visual information
processing carried out in the retina. Living organisms, in particular insects, utilize
motion detection to avoid collision and to navigate movements. Through hints
from biological systems, we could create highly functional nano-electronic
processors for special applications in parallel information processing. For the last
two decades, electronic circuits based on how living organisms perform
information processing—neuromorphic engineering ([1] - [16]) have been
viewed as a breakthrough to creating highly parallel, real time information
processors for the next generation of LSIs.
In the sections to follow, firstly, the model of motion detection in insects is
illustrated, followed by a detailed explanation on LSI implementation of the
model with single-electron devices. Finally, performance of the proposed circuit
is evaluated through Monte-Carlo based computer simulations.

7.2 The Correlation Model
The proposed circuit is based on the correlation motion scheme[3], one of the
earliest biological motion detection systems based on the optomotor response of
insects. In this model, motion detection is computed by comparing signals from a
photoreceptor to delayed signals from adjacent photoreceptors. This is illustrated
in Fig. 7.1. The photoreceptors (Pi) transduce light inputs (a light spot moving in
the direction P1 → P2 above the photoreceptors) in to electrical signals. The
transduced signals are sent to both the corresponding correlators, and the
neighboring pixels through delayers as shown in Fig. 7.1. For example, let’s
consider pixel 2. Photoreceptor P2 receives light inputs to produce electrical
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Figure 7.1: Correlator model for motion detection, consisting of photoreceptor
cells (P), delayers (d) and correlators (C). Signals from photoreceptors are fed
to the underlying correlators, and to the neighboring cell’s corelators through the
delayers.
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Figure 7.2: Operation of the correlator model: (a) transient response of photore-
ceptors P1, P2 and delayer d1. (b) Output (velocity response curve) of correlator
C2.

signals corresponding to the light intensity. These signals are sent to the
underlying correlator circuit C2 and also to the adjacent correlator C3 through
delayer circuit d2. Likewise, correlator C2 receives a delayed signal from
adjacent photoreceptor P1 through d1. Correlator C2 gives an output, the product
of these two signals (P2 and d1). In other words, C2 calculates the correlation
value between P2 and d1 signals. As illustrated in Fig. 7.2(a), if the two signals
overlap, i.e., if the time the light spot takes to move from P1 to P2 (≡t12) is
equivalent to the delay time (τ ), the correlator (C2) gives the maximum output.
This would be referred to as the maximum detectable velocity (vmax). Otherwise,
if the velocity is lower (or higher) than the maximum velocity, the correlator
gives a monotonously increasing (or decreasing) output (Fig. ??(b)).
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Figure 7.3: Conceptual circuit configuration with single-electron devices. The
photoreceptors (Pi′s) receive light inputs to produce excitatory signals toward the
delayer (D1,i′s) circuits. The delayer circuits in turn produce inhibitory signals to-
ward interneurons (I1,i′s) which consequently send inhibitory signals toward cor-
relator circuits (C1,i′s).

7.3 Circuit implementation
To implement the motion detection model, we employ local computations among
single-electron oscillators. This section starts with a description of the conceptual
circuit structure for implementing the motion detection model with single
electron devices. Then the basic function of single-electron devices and details on
implementation of the respective parts of the motion-detection model; the
photoreceptor, delayer, and the correlator circuits are illustrated. Finally a unit
pixel of the proposed motion detecting circuit is shown.
The conceptual schematic model circuit is shown in Fig. 7.3. It constitutes of
photoreceptors Pi′s, delayer circuits D1,i′s, interneuron circuits I1,i′s, and
correlator circuits C1,i′s. Photoreceptor Pm receives light inputs to produce an
excitatory signal toward correlator C1,m. Similarly, photoreceptor Pk receives
light inputs to produce excitatory signals toward the delayer circuit D1,k. The
delayer circuit in turn produces an inhibitory signal toward interneuron I1,k,
which consequently produces an inhibitory signal toward the correlator C1,m.
The correlator calculates the correlation value of the two signals from
neighboring photoreceptors; it gives a zero output at the maximum value of
inhibitory signal I1,k, or otherwise produces an increasing output as the
magnitude of the inhibitory signal decreases.
Based on this basic configuration, the following subsections give details on how
to realize the motion detecting circuit.
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7.3.1 Single-electron oscillator

To realize the proposed motion detecting circuit, we employ single-electron
oscillators. A single-electron oscillator, shown in Fig. 7.4(a), is a simple circuit
consisting of a tunneling junction Cj and a high resistance R connected in series
at a node (•) and biased with a positive voltage Vdd (Fig. 7.4(a)) or a negative
voltage −Vdd. It operates as a relaxation oscillator at low temperatures at which
the Coulomb-blockade effect takes place. The oscillator is astable if the bias
voltage is lower than the tunneling threshold (Vdd > e/(2Cj) (e is the elementary
charge)) and monostable if Vdd < e/(2Cj) (see [17] - [19]). The node voltage of
the monostable oscillator is equal to the bias voltage in an equilibrium state, and
no change occurs under in the absence of external innterference. Upon
application of an external trigger signal, such as incidence of photons, the
Coulomb blockade is broken off, and electron tunneling occurs through the
tunneling junction. The node voltage of a positively biased oscillator drops by
e/Cj , because of tunneling from the ground to the node, then gradually increases
to return to Vdd as junction capacitance Cj is charged through resistance R

(Fig. 7.4(b)-solid curve). In a negatively biased oscillator, the node voltage jumps
by e/Cj because of tunneling from the node to the ground, and then gradually
decreases to return to −Vdd (Fig. 7.4(b)-dashed curve). To implement the motion
detecting circuit, we utilize monostable single-electron oscillators.

7.3.2 Photoreceptor circuit

The retinal photoreceptor is implemented with a negatively biased single-electron
oscillator. As explained in the previous subsection, in the absence of external
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interference, the photoreceptors assume a stable state where their node (nanodot)
voltages take a value equivalent to the bias voltage. In the presence of light inputs
(incoming photons), photo-induced tunneling effect ([9] - [10]) takes place
inducing electron tunneling from the nanodot to the ground. This leads to a jump
in the node voltage from a low to a high value. We refer to this change as a firing
event. The nanodot is recharged to its original stable state. The number of firing
events would be proportional to the intensity of the illuminated light; low
intensities would produce low firing rates and vice versa.

7.3.3 Delayer and Correlator circuits

The delayer circuit is realised through capacitively coupled single-electron
oscillators, which form a delay transmission line [23]. This is illustrated in
Fig. 7.5(a). Let’s assume that photo-induced tunneling occurs at photoreceptor
Pi. This triggers a signal flow toward underlying oscillators D11,i and D12,i as
follows. Electron tunneling in Pi leads to a voltage increase in D11,i above its
threshold, thus inducing it to tunnel. Likewise tuneling in D11,i reduces the node
voltage of D12,i below the threshold value inducing it to tunnel [22] - [23].
Therefore signals emanating from the photoreceptors propagate through the series
of positively and negatively biased oscillators (transmission line), with a time
delay at each stage caused by stochastic nature of electron tunneling [17].
The basic circuit configuration of the conceptual circuit (Fig. 7.3) implemented
with single-electron devices is shown in Fig. 7.5(b). Suppose a light spot is
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Figure 7.6: Unit pixel configuration of the motion detecting circuit for left → right
images.

moving from from the left to the right. This triggers the photoreceptors to tunnel
in turns, Pi → Pi+1 → · · · . The signals emanating from the photoreceptors are
transmitted through the delayers as explained above. To implement the inhibition
function between the delayer and correlator circuits, we introduce a unipolar pair
in the trasmission line of positively- and negatively-biased oscillators. This is
realised by introducing a capacitively coupled pair of negatively-biased
oscillators between the delayer and the correlator circuit (see unipolar pair
encircled with a solid line in Fig. 7.5(b)). Therefore signals flowing from the
delayer circuit raise the node voltages of the unipolar pair, and consequently the
correlator terminal circuit (C1,i+1), thus inhibiting them from tunneling, even in
the presence of an external trigger input. On the other hand, tunneling in Pi+1

induces tunneling in M1,i+1, which in turn induces C1,i+1 to tunnel. The
correlator circuit, C1,i+1, receives excitatory signals from M1,i+1 and inhibitory
signals from I1,i (with which it makes a unipolar pair). Thus the tunneling rate of
C1,i+1 remains at a low value (almost zero) as inhibitory signals are fed from the
delayer circuit (D13,i), and increases as the inhibition signal decreases with time.

7.3.4 Unit pixel circuit

A unit pixel of the motion detecting circuit is shown in Fig. 7.6. This
configuration can only detect motion in images (light spots) travelling from the
left toward the right. A circuit configuration for detecting bi-directional motion is
illustrated in Fig. 7.7(a). The subscript ”1” (for open circles) denotes circuits
responsible for left-right motion detection, while ”2” (for shaded circles) shows
circuits responsible for right-left motion detection. The correlation value in both
directions is produced at the coresponding correlators C1,n and C2,n (for the ith
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pixel) for left-right and right-left motions respectively. These signals are fed to
the underlying layer (see dotted box in Fig. 7.7(a)) where the final correlation
value, and hence motion velocity is determined. The circuit configuration of a
unit pixel of the dotted region is shown in Fig. 7.7(b). Let’s assume the light spot
is moving from the left to the right. The correlator circuit (C1,i) would produce a
signal corresponding to the velocity of the light spot as explained above. Note
that as the light spot moves to the right, the magnitude of the inhibition signal
toward the ”left” direction correlator circuit remains high, as opposed to
decreasing inhibition signal sent to the ”right” direction correlator circuit, as
explained in Section 7.3.3. Therefore, for images travelling fom the left to the
right, the correlator circuit C2,i′s would produce a zero output in comparison to
correlator C1,i. The signals from correlator C1,i are fed to Ci through the right
branch via oscillator O1,i. At the same time, C1,i sends inhibitory signals to the
left branch (toward O2,i), blocking any signals from the C2,i oscillator. The same
is repeated in a leftward motion detection. Therefore, this mechanism makes it
possible to detect motion in both directions and to produce an output value of
zero at Ci for stationary images.

7.4 Simulation results
The operation of the proposed motion detection circuit was investigated with a
one-dimensional array construction consisting of 100 unit pixels. A unit pixel is
shown in Fig. 7.7 (unit pixel). Light inputs were simulated with an external
trigger input whose frequency is equivalent to the intensity of the input light. The
trigger input was set to an amplitude of 2.5 mV and the light intensity was
simulated with a maximum frequency of 50 MHz. All excitatory and inhibitory
capacitive couplings were implemented with a capacitance (C) of 2 aF, whereas
tunneling junction capacitance Cj was set to 10 aF.

7.4.1 Velocity response curve

With the above construction, we investigated the response of the proposed motion
detector to images (light spots) travelling at different velocities, to obtain the
velocity response curve. The velocity response curve (VRC) was obtained by
plotting the maximum firing rate of correlator circuits against the velocity of
projected images. Fig. 7.8 shows the VRC of the 50th correlator circuit as a
function of the projected image velocity moving from the left toward the right at
zero temperature. The proposed circuit can detect motion in projected images
with a maximum detectable velocity of 20 pixels/ns. This would correspond to a
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Figure 7.7: (a) Conceptual circuit configuration for bi-directional motion detec-
tion. Open circles denoted with subscript (1,i) represent circuits responsible for
left → right motion detection, while shaded circles denoted with subscript (2,i)
represent delayer, interneural and correlator circuits responsible for motion detec-
tion in images moving from the right toward the left. (b) Circuit configuration of
the overall correlation circuit (dotted portion in (a)) of the bi-directional motion
detector.
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Figure 7.8: Motion detection with a 100 pixel array construction. Vertical axis
shows the maximum firing rate of the 50th correlator circuit against the projected
image velocity. Simulated with images moving from the left to the right at zero
temperature. Maximum frequency of input trigger is set to 50 MHz.

maximum velocity of 2 Km/s if adjacent photoreceptors were fabricated at a pitch
of 100 nm. The maximum detectable velocity can be tuned by adjusting the
delay-time τ along the transmission line. This can be achieved by increasing (or
decreasing) the number of oscillators along the transmission line to increase (or
decrease) the maximum detectable velocity.

7.4.2 Response to light intensity

As mentioned in subsection 7.3.2, the firing rate of the photoreceptor circuits is
proportional to the light intensity. To confirm the response of the proposed circuit
to light intensity, images with different light intensities (and constant velocity)
were projected onto the 100-pixel retinomorphic circuit. Fig. 7.9 shows the
response of the 50th correlator circuit to various light intensities, for images
travelling at a constant velocity of 20 pixels/ns. The vertical axis shows the
maximum output of the 50th correlator circuit at zero temperature. The firing rate
of the correlator circuit (output) increases with increase in light intensity to attain
a maximum value at a light intensity of 75 MHz. The vertical axis is normalised
with the firing rate at 75 MHz.
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Figure 7.9: Response to light intensity simulated by varying the maximum fre-
quency of input tigger signal. Vertical axis represents the maximum firing rate of
the 50th correlator circuit, normalised with the maximum firing rate at 75 MHz.
Simulated at zero temperature.

7.4.3 Temperature characteristics

We evaluated the temperature performance of the motion detecting circuit with
increasing temperatures by plotting the hump (see Fig. 7.10(a)) height against the
temperature. The hump height is the difference between the firing rate at zero
velocity and at the maximum detectable velocity. We refer to this as the
signal-noise (SN) ratio. We observed that as the temperature increases, random
firing as a result of thermal induced electron tunneling within the circuit also
increases (Fig. 7.10(a), (b), and (c) simulated at T = 5, 10, and 20 K respectively).
As a result the height of the hump (SN ratio) decreases, and finally flattens at high
temperatures. Fig. 7.11 shows the simulated results for a temperature range
between 0 and 30 K. The vertical axis, hump height is normalized with the
maximum height at zero temperature. With the present configuration, the
proposed circuit can perform at signal-noise ratio of 0.4 at 20 K.

7.5 Summary
In the first chapter in this part, we proposed a motion detection circuit based on
correlation neural models in insects. Based on this model, we proposed a circuit
structure with single-electron devices and evaluated its performance through
Monte-carlo based simulations. The proposed circuit could detect motion in
images with a maximum detectable velocity of 20 pixels/ns. The temperature
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Figure 7.10: Velocity response curves simulated for temperature T = 5 K (a), 10
K (b), and 20 K (c). Vertical axis shows the maximum firing rate of the 50th

correlator circuit against the projected image velocity.
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Figure 7.11: Temperature characterists: hump height (signal-noise ratio) plotted
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ature.

characteristics of the proposed circuit were analyzed. The circuit could detect
motion in images with a signal-noise ratio of 0.4 at 20 K.
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8
A neuromorphic circuit for edge

detection and extraction

8.1 Introduction
This chapter illustrates an edge detecting (or extracting) circuit inspired by image
processing mechanisms in the vertebrate retina. Edge detection is a primary
function in the early stages of visual processing carried out in the vertebrate
retina. Thus far, only neuromorphic circuits achieved with silicon have been
designed and fabricated [1] - [3]. In this work, we propose a possible
image-processing structure for single-electron circuits as an example toward
linking nano-electronic devices with neuromorphic architectures. Based on a
well studied model of the vertebrate inner retina, this chapter illustrates a
single-electron circuit that detects edges, and investigates its basic operations.
The chapter starts by explaining the model. This is followed by details on how to
implement the model with single-electron devices. Finally, details on the
operation of the proposed circuit are illustrated with one- and two-dimensional
circuit structures.

8.2 The model
The vertebrate retina consists of massively interconnected neural cells in a
hierarchical structure, where edge detection is carried out mainly through three
types of cells: (i) photoreceptors that transduce light inputs into electrical signals,
(ii) horizontal cells that receive inputs from the superjacent layer of
photoreceptors and produce spatially averaged outputs in relation to the inputs,
and (iii) bipolar cells that produce the difference in amplitudes between the
outputs of photoreceptors and horizontal cells. The schematic model is shown in
Fig. 8.1(a) . In this model, we assume that illuminated (or non-illuminated)
photoreceptors produce low (or high) potentials (Figs. 8.1(b) and (c)-P). The
outputs are spatially averaged by horizontal cells (Fig. 8.1(c)-H). The bipolar
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Figure 8.1: Cross section of the vertebrate retina, showing neurons involved in
edge detection: (a) Model: P—Photoreceptors, H—Horizontal cells, and B—
Bipolar cells. (b) Intensity profile of incident light and (c) Potentials of P, H,
and B cells, showing response to the incident light (input)

cells detect the position of edges in the incident images by producing the
difference in amplitudes between photoreceptors and horizontal cells. This is
obtained by subtracting“ H”- from their corresponding“ P”-values in bipolar
cells. Therefore, the non-zero outputs of bipolar cells represent the positions of
edges in the input image (Fig. 8.1(c)-B).

8.3 Circuit implementation
In this section we propose a neuromorphic architecture, based on the retinal
model above, with single-electron oscillators. Details on the operation of
single-electron devices are presented in chap. 7. We start by giving details on how
to realize the constitutive elements, i.e., photoreceptors, horizontal and bipolar
cells with single electron devices, and then explain the configuration of a unit
pixel circuit.

8.3.1 Photoreceptor circuit

Photoreceptors convert incident light inputs into electrical signals. We implement
a retinal photoreceptor with a positively biased monostable oscillator that is
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triggered by external light inputs. In the absence of external inteference (thermal
or incoming photons) the node voltage of the oscillator is stable (and equivalent to
the bias voltage). If a photon (light) is illuminated on the nano-dot, photo-induced

charging effect ([20],[21]) occurs and an electron tunneling is induced from the
ground to the nano-dot across the tunneling junction. Therefore the oscillator
changes its node voltage from positive to negative. Since the intensity of input
light is proportional to the number of incident photons, the number of tunneling
and recharging events also increase. Therefore the intensity of incoming light
would correspond to the average tunneling rate in the photoreceptors. To realize
the photoreceptor layer, we use a single oscillator for a single photoreceptor cell.

8.3.2 Horizontal cell circuit

The horizontal cell layer receives inputs from the superjacent layer of
photoreceptors to produce a spatially averaged output. The horizontal cells are
implemented with negatively biased single-electron oscillators. Fig. 8.2 shows
the configuration of the horizontal cell layer. The extensive gap junctions in the
retinal cells are emulated by a resistive-coupling, realized through resistor Rh,
between neighboring horizontal oscillators. If tunneling takes place in one of the
horizontal cell circuits, from the node to the ground, the node voltage of the
corresponding oscillator changes from a low to a high value. Through this
resistive coupling, the excess negative charge is redistributed to neigboring
horizontal cells, reducing their node voltages. The change in the node voltage is
inversely proportional to the spatial distance from the tunneling cell: oscillators
nearest to the tunneling cell experience a higher drop in their node voltages, and
therefore have a higher probability of tunneling than those positioned further.
Thus, the average tunneling rate decreases with the spatial distance from the
tunneling cell. Therefore, negatively biased oscillators coupled through
resistances would produce a spatially weighted output in relation to the input
from superjacent photoreceptor cells.

8.3.3 Bipolar cell circuit

Bipolar cells detect the position of edges by producing the difference in the
amplitude of corresponding photoreceptors and horizontal cells. In conventional
silicon retinas, this could be realized with an operational amplifier or current
subtraction method. To implement a similar architecture with single-electron
devices, we would require a complicated circuit. We therefore, qualitatively
imitated the subtractive functions of the bipolar cells through neural shunting
inhibition mechanism.
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Figure 8.2: Configuration of the horizontal cell layer: A single horizontal cell
is implemented with a negatively biased oscillator, while the junction gaps are
emulated through resistive coupling realized with resistor Rh

This mechanism is illustrated in Fig. 8.3. We consider a configuration in which
the photoreceptors (P) produce an excitatory signal, while the horizontal cells (Hl

and Hr) produce an inhibitory signal toward ”D” cells. If the excitatory signal
surpasses the inhibitory signal in amplitude, it triggers cell ”D” to tunnel
(excitation). Otherwise, cell ”D” would be restrained from tunneling (shunting
inhibition).
These two mechanisms can be achieved with single-electron devices through
capacitive couplings [22]-[24]. An excitatory coupling is achieved by connecting
a positively (+) biased oscillator to one that is negatively (-) biased. In the absence
of an external input, the oscillator node takes a voltage value equivalent to the
bias voltage. If tunneling occurs in the positive oscillator, through the capacitive
coupling, the negative charge leads to a drop in the node potential of the coupled
negative oscillator below its threshold, thus inducing it to tunnel. Shunting
inhibition is realized by applying the same bias voltage to two coupled oscillators.
For example, if the two are positively biased, tunneling in either of them leads to
a drop in the node voltage of the other far below the threshold, thus restraining it
from tunneling (inhibition) even in the presence of an external trigger input.
Fig. 8.4 shows fundamental circuits for neural excitation and inhibition with
single-electron oscillators. Let us assume that electron tunneling occurred in ”P”.
This triggers a signal flow along the middle branch: electron tunneling in ”P”
leads to a drop in the node voltage of B1 below its threshold (thus inducing it to
tunnel). B1 in turn induces tunneling in B3, and tunneling in ”O” is consequently
induced (excitation). On the other hand if tunneling takes place in cells Hl and
Hr, this triggers subsequent tunneling in the left and right branches. Tunneling in
B2l and B2r decreases the node voltage of B3 restraining it from tunneling
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Figure 8.3: Conceptual configuration of bipolar cells: Neural excitation and inhi-
bition

(shunting inhibition)–in other words, tunneling in ”H” cells blocks excitatory
signals initiating from ”P” in the middle branch. If tunneling occurs in either of
the ”H” cells, this would not have a sufficiently large inhibitory effect on B3, and
the probability of electron tunneling taking place (tunneling rate) would be higher
than that in the previous case. With these excitatory and inhibitory configurations,
we partly imitate the subtractive functions of bipolar cells.

8.3.4 Configuration of a unit pixel

The edge detecting circuit is constructed with ”P”, ”H”, and ”B” blocks, proposed
in the preceding section. The configuration of a unit pixel is shown in Fig. 8.5. To
increase the inhibitory effect of the horizontal cell layer, additional excitatory
coupling was introduced between B1,2 and B2r.

8.4 Simulation results
To confirm the basic operation, we constructed (i) a one-dimensional array
retinal-circuit consisting of 100 pixel circuits, and (ii) a two-dimensional
retinal-circuit consisting of 100 × 100 pixel circuits. We carried out Monte-Carlo
based simulations: transient responses of the ”P”, ”H”, and ”B” cell circuits, edge
responses, sensitivity to light intensity, Mach bands and evaluated signal to noise
ratio (SNR) with temperature, to confirm their basic operations. In the
simulations, the horizontal layer gap junction was simulated with a resistance
Rh = 400 MΩ, excitatory and inhibitory capacitive coupling with a capacitance
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Figure 8.4: Realizing the bipolar circuit: Neural excitation and inhibition with
single-electron circuits

of 2 aF, tunneling junction capacitance Cj, series resistance R, and tunneling
junction conductance were set to 10 aF, 100 MΩ, and 1 µS respectively. The
simulation time was 700 ns.

8.4.1 One-dimensional array circuit

The projected image is shown in Fig. 8.6. The dark region shows non-illuminated
regions of the array, while the unshaded region (pixels 33-67) represents
uniformly illuminated photoreceptors.
Light input was simulated by applying an external trigger input (whose frequency
is equivalent to the intensity of the input light) to corresponding photoreceptors.
In this simulation, the applied trigger frequency and amplitude were set to 110
MHz, and 2.5 mV respectively.

Transient responses

Fig. 8.7 shows the time-course responses of photoreceptors, horizontal and
bipolar cell circuits. Fig. 8.7(a) shows the response of the 50th photoreceptor
circuit. The photoreceptor receives a series of trigger signals, which induce it to
tunnel from a high to a low voltage, followed by recharging to repeat the same
cycle. We refer to each of these cycles as a firing event. The light intensity is
computed by calculating the average firing rate of each photoreceptor circuit. Fig.
8.7(b) shows the response of the 50th cell of the subjacent horizontal cell layer.
As mentioned in the previous section, due to the averaging effect of gap
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Figure 8.5: Configuration of a unit pixel of the edge detecting circuit consisting of
”P”, ”H”, and ”B” circuit blocks
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Figure 8.6: Binary image projected onto the one-dimensional retinal circuit

junctions, the firing rate of horizontal cell circuits is somewhat lower than that of
corresponding photoreceptor circuits. Figs. 8.7(c) and (d) show the responses of
the 50th (middle of the illuminated region) and 33rd (left edge) bipolar cell
circuits respectively. Note that the firing rate of circuits within the illuminated
region (Fig. 8.7:(c)) is not zero, however, it is extremely low compared to the
edge cells. The simulations were carried out at T = 0 K.

Edge response

Figs. 8.8(a), (b) and (c) correspond to the average tunneling rates for
photoreceptors, horizontal and bipolar cell layers. The vertical axes are
normalized by the maximum average firing rate in the photoreceptor layer. As
mentioned in the preceding section, the average firing rate of the horizontal cells
is somewhat lower than that of the photoreceptors. The image edges correspond
to the high firing positions of the bipolar cell circuit. However, the firing rates of
bipolar cells within the illuminated region have a comparatively low non-zero
output.
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Sensitivity to light intensity

The firing rate of photoreceptors would be proportional to the intensity of input
light (section 8.3.1). To simulate the response of our circuit to various light
intensities, we altered the frequency of the applied input pulse trigger, and
computed the average tunneling rates of bipolar cells. The results are shown in
Fig. 8.9. The maximum response frequency was 110 MHz, determined by the
minimum charging period within ”P”, ”H”, and ”B” cell layer oscillators.

Mach bands

Mach bands are defined as illusory light or dark bands that appear when a spatial
ramp in light intensity (in projected images) abruptly changes slope [1],[25] . To
confirm the Mach-band response of our circuit, the ramp input shown in
Fig. 8.10(a) was fed to the photoreceptor layer. The input was simulated by
setting the frequency of the input trigger signal at 10MHz for photoreceptors
between nodes 0 and 33, ramp increment between nodes 33 and 67 from 10 MHz
to 110 MHz and a constant frequency of 110 MHz for nodes 68-99. The response
of the bipolar cell circuit layer (output) is shown in Fig. 8.10(b). The vertical axis
is normalized by the firing rate for maximum light intensity (frequency =
110MHz). The circuit could detect the abrupt change in slope of input light
intensity. This is shown in Fig. 8.10(b)-”peak”, at node positions ”33” and ”67”.

Temperature characteristics

The temperature characteristics were evaluated by computing the circuit’s ability
to detect edges with increasing temperatures. Figs. 8.11 (a)-(c) show edge
responses at T = 0 K, T = 10 K, and T= 20 K respectively. The vertical axes are
normalized by the maximum firing rate in the bipolar cell layer at T = 0 K. As the
temperature increases, the overall tunneling rates within the circuit increase,
leading to a decrement in its ability to detect edges. The ability to detect edges
was evaluated as the peak signal to noise ratio (PSNR). To evaluate the overall
performance against temperature, the PSNR is defined as:

PSNR ≡ 20log10(
fmax√
MSE

),
�� ��8.1

MSE ≡ 1
N

N−1∑
i=0

(f0(i) − fT(i))2

where, fmax is the average firing rate for the entire bipolar circuit at room
temperature, MSE is the mean square error, f0(i) is the firing rate of the ith node
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of the bipolar circuit at zero temperature (i.e., the ideal output), and fT(i) is the
firing rate for the ith node of the bipolar circuit at temperature T K, and N = 100.
The MSE at each temperature was calculated by averaging five runs. The firing
rate fmax was 8.33, normalized by the maximum firing rate at 0 K.
Fig. 8.12 shows the PSNR over a temperature range between 0 and 50 K. The
circuit could detect edges with a contrast ratio of 23 dB at T = 5 K. This is
presumed to be low in comparison to the capacity of the vertebrate retina, (and
other electronic systems) in the range of 20 - 40 dB at higher temperatures. This
could be attributed to the fact that besides inhibitory mechanisms, there could be
other mechanisms involved in edge detection in actual retinas, as compared to our
circuit that only modeled inhibition mechanisms [26]-[28]. These could also
include stochastic resonance [29], [30], aggregating and thresholding
mechanisms together with higher-level visual information processes found in
biological systems. Therefore, we think that the PSNR of our circuit could be
improved if we were able to incorporate all these mechanisms. A possible
architectural approach that could be used to improve performance against
temperature, hence PSNR in the proposed circuit, is discussed in section 8.5.

8.4.2 Two-dimensional array circuit

The two-dimensional array was constructed with 100×100 pixel circuits.
Fig. 8.13 shows a schematic top view of the circuit. Each photoreceptor cell is
capacitively coupled to four-horizontal cells in the subjacent horizontal layer.
Each of the horizontal cells is resistively coupled to its four adjacent cells in the
horizontal layer. Similarly, each of the bipolar cells is capacitively coupled to
corrresponding cells in the neighboring four-pixels.

Edge response

To confirm the operation of the two-dimensional circuit, a 34 × 34 pixel sized
window was projected into the middle of the array circuit. The response is shown
in Fig. 8.14. The photoreceptors receive light inputs to produce a high firing rate
(Fig. 8.14(a)). The horizontal cell layer response is shown in (b), while the
bipolar cell output is shown in (c). We could successfully detect edges in the
projected image.

Temperature characteristics

To analyse temperature characteristics of this circuit, we consider the cross
section along A-B, in the middle of the input image (Fig. 8.15). Point ”A” was
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taken as node number 0, while B as node number 99. The ability of the circuit to
detect edges was analyzed by computing the average tunneling rates of bipolar
cells along this cross section. The results are shown in Fig. 8.16, for T = 0 K, 5 K,
and 10 K for (a), (b) and (c) respectively. The vertical axis is normalized by the
maximum average firing rate of bipolar cell circuits at T = 0 K. The firing rates
for all bipolar cells increase with temperature. The performance of the circuit in
detecting edges in projected images over a temperature range of 0 - 20 K is shown
in Fig. 8.17. The vertical axis represents the peak signal-to-noise ratio (PSNR)
defined as:

PSNR ≡ 20log10(
fmax√
MSE

),
�� ��8.2

MSE ≡ 1
N2

N−1∑
i=0

N−1∑
j=0

(f0(i, j) − fT(i, j))2

where, fmax is the average firing rate for the entire bipolar circuit at room
temperature, MSE is the mean square error, f0(i, j) is the firing rate for the
[i, j]th node of the bipolar circuit at zero temperature (i.e. the ideal output), and
fT(i, j) is the firing rate for the [i, j]th node of the bipolar circuit at temperature
T K, and N = 100. The MSE was obtained by averaging five runs at each
temperature. The firing rate fmax was 11.36, normalized by the maximum firing
rate for the bipolar cell layer at 0 K.

Edge enhancement in a gray image

Fig. 8.18 shows the edge computation results of a 100×100 sized gray image
projected onto the two-dimensional circuit. Fig. 8.18(a) is the input image. The
dark region represents non-illuminated pixels of the array. The coloring in (b),
and (c) corresponds with firing rates of the oscillators, with the dark coloring
representing a zero firing rate, and the white representing a high firing rate. The
edge detection results at T = 0 K, and T = 5 K are shown in Figs. 8.18(b) and (c)
respectively. As the temperature increases, the firing rate of the entire the circuit
increases. This is indicated by the grayish background in Fig. 8.18(c). This would
increase with temperature, leading to a low edge extraction capacity.

8.5 Discussion: Improving temperature perfor-
mance

Stochastic resonance is a phenomenon where weak signals can be retrieved from
a noisy output [14],[35] by applying an optimal ammount of random noise.
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Single-electron devices are sensitive to thermal noises. As shown in our results,
the probability of random electron tunneling (firing) rises as the temperature
increases, degrading the capacity of edge detection. One method of improving the
circuit performance in relation to temperature is to utilize these thermally induced
noises (random tunneling events). Living organisms are immune against noise in
information processing; they effectively process information even in noisy
environments [29],[30]. It is presumed that one of the ways they are able to do so
is by exploiting stochastic resonance (SR) [36]. Oya et al., [37] proposed a
single-electron neural network and demonstrated its improved temperature
performance by employing SR in detecting output signals. This was achieved by
setting the input signal to a value lower than the tunneling (firing) threshold of the
neurons. By applying thermal noises, neurons with non-zero inputs were
thermally induced to tunnel—tunneling events were synchronized with the input
signal to a certain quantity of thermal noises. They found that the neuron
performance against noises was enhanced through partially using thermal noises.
We could use the same method in our edge-detecting circuit, where a number of
circuit blocks would be fed with the same input. After each of the blocks
processes the input image, their outputs would be summed to produce the overall
output. Through this process, we could be able to successfully carry out edge
detection with improved performance at higher temperatures. Therefore, applying
the SR phenomenon to the proposed circuit would enhance temperature
performance, hence increased PSNR against thermally induced noise, without an
immediate need to find a solution through fabrication techniques.

8.6 Summary
Toward creating neuromorphic architectures with nano-electronic devices, we
proposed a single-electron circuit that can detect edges in incident images. Based
on a well studied retinal model, we implemented the model with single-electron
devices, and confirmed its basic performance through Monte-Carlo based
simulations.
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Figure 8.7: Transient responses of constitutive circuit cells: (a) Photoreceptors,
(b) Horizontal cells, (c), and (d) Bipolar cell circuits. (c) shows the response of
bipolar cells in the middle of illuminated region, while (d) shows response of those
in the edges of the illuminated region. The simulation temperature T = 0 K
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Figure 8.11: Edge detection at sample temperatures: (a) Temperature T = 0 K, (b)
Temperature T = 10 K, and (c) Temperature T = 20 K
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Figure 8.14: Response of (a) Photoreceptors, (b) Horizontal cells, and (c) Bipolar
cells to incident image (T = 0 K)
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Figure 8.15: Schematic diagram showing cross section ”A-B” along which tem-
perature characteristics were analyzed.
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Figure 8.16: Firing rates for bipolar cell circuits along cross section A-B at smple
temperatures. (a) T = 0 K, (b) T = 5 K, and (c) T = 15 K
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9
Pulse density modulation circuits

exploiting noises to improve
signal-to-noise ratio

9.1 Introduction
This chapter investigates how we can employ noises, instead of eradicating them,
to improve the performance of LSI circuits. This is done by investigating the
performance of two circuit architectures, inspired by pulse-density modulation in
neurons. In the first circuit, we show that indeed introducing noises improves
noise shaping characteristics of the proposed analog-to-digital converter circuit,
hence increasing signal-to-noise ratio. In the second circuit, we investigate the
implications of noises in improving the fidelity with which the proposed neuronal
circuit can transmit high frequency signals. In both cases, we found that
introducing noises reduces the probability of synchrony, leading to random firing
events in the circuit network. This in turn improves temporal resolution with
which the neuron network can track input signals. The chapter is organized as
follows. First, a preview of signal processing in neurons is provided, followed by
investigation on the first proposed circuit: noise-shaping in a population of
single-electron network. This is followed by the second proposed circuit:
implications of noises in the fidelity of signal transmission.

9.1.1 A short review of pulse-density modulation in neurons

A neuron aggregates inputs from other neurons connected through synapses. The
aggregated charge raises the membrane potential until it reaches a threshold,
where the neuron fires generating a spike. This spike corresponds to a binary
output“ 1”. After the firing event, the membrane potential is reset to a low
value, and it increases again as the neuron accepts inputs from neighboring
neurons (or input signals) to repeat the same cycle; producing a stream of“ one”
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Figure 9.1: (a) Pulse density modulation in neurons: analog input is converted into
a pulse train whose density is proportional to the net amplitude of the input signal.
(b) Fundamental structure and operation of integrate-and-fire neurons (IFNs). The
IFN receives input voltages through excitatory and inhibitory synapses, and pro-
duces pulses when the net input voltage exceeds the threshold. The output pulse
density (firing rate) is proportional to the net input voltage.

and“ zero”pulse trains. The operation of neurons is often modeled with spiking
neurons such as the integrate-and-fire neurons. Fig. 9.1(b) illustrates the
fundamental operation of an integrate-and-fire (IFN) neuron. The open circles (◦)
and shaded circles (•) represent excitatory and inhibitory synapses, respectively.
The IFN receives input signals (voltages) through the excitatory synapses (to raise
its membrane voltage) and inhibitory synapses (which decrease the membrane
voltage) from adjacent neurons, to produce a spike if the summed input voltage
(
∑

V ex
i −

∑
V in

j ) exceeds the threshold voltage. After the IFN fires, its
membrane voltage is reset to a low value, and the integration action resumes.

9.1.2 Single-electron integrate and fire neuron

A single-electron oscillator is used to model the operation of an integrate-and-fire
neuron (IFN). The structure and operation of a single-electron oscillator is shown
in Fig. 9.8(a) and (b), respectively. A single-electron oscillator produces
self-induced relaxation oscillations if the bias voltage is higher than the tunneling
threshold . The node voltage V1 increases as the capacitance Cj is charged
through the series resistance (curve AB), until it reaches the tunneling threshold
e/(2Cj), at which an electron tunnels from the ground to the nanodot across the
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Figure 9.2: Single-electron neuron: (a) circuit configuration and (b) waveform
showing oscillation of node voltage V1, as capacitor Cj is charged through re-
sistance R (from A to B) and reset by an electron tunneling from the ground to
the node (voltage drop from B to C). This sudden drop in the node voltage (BC)
corresponds to a pulse output.

tunneling junction, resetting the node voltage to −e/(2Cj). This abrupt change in
node potential (from B to C) can be referred to as a firing event. The nanodot is
recharged to repeat the same cycles. Therefore, a single-electron oscillator could
be viewed as an integrate and fire neuron, which aggregates input voltages (or
inputs from from neighboring neurons) producing a pulse when its node voltage
reaches the threshold voltage. A detailed explanation of the operation of a
single-electron oscillator is shown in chapter 7.

9.2 A pulse-density modulation circuit exhibit-
ing noise shaping with single-electron neu-
rons

9.2.1 Model and circuit implementation

Fig. 9.3 shows the model of the proposed circuit, consisting of three neuronal
elements, the minimum number of units required to achieve a considerable
signal-to-noise ratio ([2]). The neurons receive the same analog input through
excitatory synapses (◦) and produce digital pulses toward the global inhibitor Σ
[9]. The output is fed-back to the three elements through inhibitory synapses
denoted by shaded circles (•) in the network. Firing in any of the neurons in the
network decreases the membrane potential of the other neurons, reducing the
probability of their firing.
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Figure 9.3: Model of pulse-density modulation circuit employing excitatory and
inhibitory mechanisms. A common input is fed to the three neurons through ex-
citatory synapses (◦), while the output is fedback to the three neurons through
inhibitory synapses (•).

The neuronal structure in Fig. 9.3 is implemented with single-electron oscillators
that receive the same analog input. Each neuron in the network is implemented
with a single electron oscillator. The input induces electron tunneling in the
single-electron oscillators, generating pulses toward the global inhibitor. The
global inhibitor (Σ) sums the pulses to produce a train of spikes representing
tunneling (firing) events in the three neurons. Fig. 9.10 shows the circuit
configuration. The global inhibitor is realized by numerically summing the firing
events in the network. Inhibitory synapses are implemented by coupling
capacitances (C), that decrease the node voltages of all the oscillators once a
pulse is released at the output.
Each neuron in the network receives the same input (V (t)) raising its node
voltage. Whenever any of the three single-electron oscillators reaches its
threshold voltage, it fires, releasing a pulse toward the global inhibitor. The global
inhibitor, through the coupling capacitors C, subtracts a certain amount of voltage
from the other oscillators, suppressing them from tunneling for a certain period of
time. This contributes to the distribution of output pulses. In the absence of the
global inhibitor, all the neurons would fire randomly and with almost the same
timing, producing a Poisson-like distribution of inter-spike intervals (ISIs).
Contrally, by introducing the global inhibitor, consecutive firing events in the
network are suppressed, resulting in a Gaussian-like distribution of ISIs in the
coupled network.
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Figure 9.4: Single-electron circuit performing pulse-density modulation. The
structure consists of three single-electron oscillators, and a global inhibitor Σ. The
output is fed back to all the other oscillators through the capacitive coupling C.

9.2.2 Simulation results

As mentioned in the introduction, the noise-shaping properties of the network of
model neurons were reportedly improved by introducing dynamic and static
noises [7]. In our circuit, this was realized as follows. As noted earlier, thermal
noises lead to random electron tunneling in single-electron devices. We therefore
introduced dynamical noises by tuning the temperatures in both the coupled and
the uncoupled networks. Static noises were introduced only in the coupled
network, by varying the values of series resistances R. In the coupled network, all
the series resistances were set to 44 MΩ, whereas in the coupled network, the
mean value of the three resistances was 44 MΩ (to obtain a ISI distribution with a
standard deviation of one sigma), and the variance was ±12.5%. The inhibitory
coupling in the coupled network was implemented with a capacitive coupling of 4
aF. The temperature was set to 0.5 K in all simulations.
The performance of both the coupled and the uncoupled circuits was investigated
through Monte-Carlo based computer simulations. All the circuit units in both the
coupled and the uncoupled networks were fed with an input Vd = 7.85 mV.
Fig. 9.12 shows the raster plots of the firings of the network elements. The top
diagrams of (a) and (b) show the random pulses for each unit in the uncoupled
and coupled networks, respectively. The bottom diagrams in (a) and (b) show the
summed output (pulse train) for all the elements in the uncoupled and coupled
networks, respectively. From the diagrams, we could observe that the firing
timings in the uncoupled network were random and all the neurons fired with
almost the same timing. In the coupled network, however, the firing of one of the
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Figure 9.5: Raster plots for firing events for uncoupled (left diagrams) and coupled
(right diagrams) networks. The top diagrams show firing events for each neuron,
while the bottom diagrams show summed output spike train at the global inhibitor
Σ. Firing events in the uncoupled network were random and almost consecutive,
whereas firing timings in the coupled network were well distributed as a result of
the inhibitory coupling inhibiting concurrent events.

neurons inhibited the others from firing, thus reducing the probability of
consecutive firing in the network. In addition, the variance in the series
resistances results in variations in the time constants of the network neurons. This
reduced the probability of neurons attaining the firing threshold at the same time,
and thus improved the distribution of firing intervals in the network.
Consequently, these two factors resulted in well distributed firing timings in the
network, leading to a Gaussian-like distribution of inter-spike intervals.
Fig. 9.13 shows the ISI distribution of firing events in the whole network. The
histogram for the coupled network shows a Gaussian-like distribution with an
inter-spike interval of 1.65 ns at the maximum number of firing counts. The
histogram for the uncoupled network, in contrast, shows a Poisson-like
distribution. We also investigated the effect of increasing the variance in the
series resistances on the standard deviation of the Gaussian-like distribution. We
found that the standard deviation increases as the variation decreases below or
increases above 12.5 %. As the variance decreases, the probability that multiple
neurons in the network reach the threshold voltage at the same time increases.
This shifts the ISI at the maximum firing rate toward zero, consequently leading
to a larger standard deviation of the ISI distribution. The ISI distribution can,
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Figure 9.6: Histogram of inter-spike intervals (ISIs) for coupled and uncoupled
networks. The uncoupled network shows a Poisson-like distribution of ISIs where
the firing events in the network elements are almost concurrent. The coupled net-
work shows a Gaussian-like distribution, as a result of distributed firing events.

however, be tuned by adjusting the value of the inhibitory coupling capacitance
C. As the coupling strength increases, the number of neurons reaching the
threshold concurrently decreases drastically. In otherwords, the firing timings
tend to distribute evenly, resulting to a sharper Gaussian-like distribution.
However, increasing the coupling strength to a relatively high value, beyond the
optimal value (of 4 aF in our simulations), leads to a winner-takes-all [10]
operation (where only one neuron in the network produces the highest spike rate
and inhibits all the others from firing). This would be undesirable, especially in a
network of fault- and defect-prone elements, where increasing the probability of
correct operation requires that all the elements play a substantial part in the
network operation (i.e. a winners-share-all [11] operation, where several neurons
in the network survive). Thus obtaining an ideal operation of the network requires
tuning the firing rates of individual neurons though the series resistances, and also
tuning the summed firing rate of the network through the capacitive coupling to
obtain a winners-share-all type function.
Fig. 9.7 shows the power spectra for the coupled and uncoupled networks. The
three neurons in both networks were fed with a sinusoidal input
Vd = V0 + Asin(2πft), where amplitude A = 2.5 mV, frequency f = 100 MHz,
and bias voltage V0 = 7.85 mV. The power in both cases was calculated with 25
runs averaged with a square window. From the results we can confirm that the
global inhibitory coupling and the heterogeneity in series resistances collectively
helped reduce the noise level in the coupled network substantially. The
signal-to-noise ratio in the uncoupled network was 22.96 dB, while that in the
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Figure 9.7: Power spectra of coupled and uncoupled networks. The coupled net-
work shows a reduced noise level in the lower frequencies (signal band), improving
the SNR with 4.34 dB as compared to the uncoupled network.

coupled network was 27.30 dB below the cutoff frequency of 1 GHz. The
harmonic distortions in the results are due to (i) the intrinsic firing rates of the
individual neurons in the network and (ii) non-linear feedback introduced to the
network. These distortions degraded the SNR characteristics. They could be
decreased by setting the input signal frequency to a value much lower than the
firing frequencies of individual neurons in the network. Another way of
increasing the SNR without tuning the input frequency would be by filtering the
output signals, to get rid of the higher frequencies. This is often realized with
digital filters in the feedback loop of Σ − ∆ converters [12].

9.3 Implications of temporal noises and device
fluctuations in enhancing fidelity of signal
transmission in single-electron neural cir-
cuits

9.3.1 Model and circuit structure

This study is based on a model of the vestibulo-ocular reflex (VOR) proposed by
Hospedales et al. ([15]). In their work, they reported that noises and
heterogeneity in the intrinsic response properties of neurons account for the
high-fidelity in VOR functionality.
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Figure 9.8: Neural network model of signal encoding in the VOR consisting of n
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Figure 9.9: Implementation of the model with single-electron oscillators.

Fig. 9.8 shows the part of the model, which converts head movements into neural
spikes in the VOR, consisting of n neurons. The structural heterogeneity in the
membrane time constants of individual neurons is represented by ξi. We refer to
this heterogeneity as static noises. The neurons receive a common analog input
and produce spikes whose temporal density corresponds to the amplitude of the
input signal. The output terminal receives pulses from all the neurons in the
network to produce a spike train. The noises introduced into the network lead to
random and independent firing events in the neurons, reducing the probability of
synchrony in the network. This enhances the precision with which the neurons in
the network can encode signals with input frequencies higher those of individual
neurons.
The above network is implemented with single-electron IFNs (oscillators) as
shown in Fig. 9.9. A single-electron oscillator consists of a tunneling junction Cj,
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Figure 9.10: Transient response of a single neuron. (a) and (c) show input signals
with input frequencies of 600 MHz and 250 MHz, respectively. (b) and (d) show
the output characteristics of neurons fed with input signals of 600 MHz and 250
MHz, respectively.

resistance Ri and a bias voltage source Vin. The node voltage of the oscillator
remains stable, if the bias voltage is lower than the tunneling threshold. When the
node voltage of the oscillator increases beyond the threshold voltage, say as a
result of an incoming input pulse, an electron tunnels from the ground to the
node, leading to an abrupt change in the node voltage. This is referred to a firing
event. The node voltage is recharged back to the resting potential to repeat the
same process. Each neuronal element in the network is implemented with a
single-electron neuron. From a previous study, we established that the minimum
number of neuronal elements required in such a network could be as small as
three. Therefore in the present investigation the number of neurons was set to
three.
The heterogeneity in the model was introduced in the circuit as a variation in the
series resistance Ri. Note that Ri is a critical parameter in setting the intrinsic
response frequency of each neuron. Therefore, by tuning the values of Ri, we
could simulate the heterogeneity of membrane time constants of actual neurons.

9.3.2 Simulation results

In the simulations, all the neurons were connected to a input voltage
Vin = Vdd + V (t), where Vdd (bias voltage) was set to 7.8 mV to achieve a
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Figure 9.11: Output firing rate of a single neuron plotted against the input pulse
frequency.

monostable stable operation in the absence of input signals, V (t) is a pulsed input
signal with an amplitude of 0.8 mV. The capacitance of the tunneling junctions Cj

was set to 10 aF. The simulation time was set to 800 ns, while the operation
temperature T was set to 0.5 K for simulation results shown in Figs. 9.10, 9.12
and 9.13(b) and (c).
Fig. 9.10 shows the transient response of a single neuron. Fig. 9.10(a) and (c)
show the respective input signals with a frequency of 600 MHz and 250 MHz,
respectively. Fig. 9.10(b) shows the neuron response to input ”(a)”, while ”(d)”
shows the neuron response to input ”(c)”. The series resistance was set to 100MΩ.
Fig.9.10(d) shows successful encoding of the input signal (the neuron fires once
for each pulse in the input signal 1) whose frequency is within the intrinsic firing
rate of a single neuron. In Fig. 9.10(b), the neuron could only encode some of the
input pulses, leading to a lower firing rate as compared to the input rate. In other
words, the neuron in (b) could only transmit some of the input pulses toward the
output. This degrades the fidelity of signal transmission along the neural network.
Fig. 9.11 shows the response of a single neuron over a wide range of input
frequencies. The horizontal axis shows the input frequency, while the vertical
axis shows the average firing rate of the neuron. The neuron response was linear

1Tunneling (firing) in single-electron devices involves a probabilistic time lag or waiting time be-
tween when the node voltage exceeds the threshold voltage and when an electron can actually tunnel
from the ground to the node, releasing a spike toward the output terminal. Due to the effect of the time
lag, a neuron might fail to fire even after achieving the tunneling conditions as seen in Fig. 9.10(d). As
a result, the average firing rate would be somewhat lower than the input pulse rate
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for input signals with a frequency of up to 500 MHz. Beyond this range, the
output was highly distorted. This shows that a single neuron can successfully
encode (respond to) signals with a maximum input frequency of 500 MHz.
The response of a population of neurons to various input frequencies was
investigated with two sets of neuron ensembles: homogeneous and heterogeneous
networks. In the homogeneous ensemble, the series resistances R1, R2, and R3

were set to the same value, whereas in the second set, heterogeneity (static
noises) was introduced by varying the values of series resistances in the three
neurons. The results are shown in Figs. 9.12 and Fig. 9.13.
Fig. 9.12(a) shows the input signal with a frequency of 600 MHz. Figs. 9.12(b-1)
and (c-1) show the response of the homogeneous network, where the series
resistances R1, R2 and R3 were set to 100 MΩ. Fig. (b-1) shows the firing events
of individual neurons in the network. Fig. (c-1) shows the summed spike output
(spike train) at the output terminal. We could confirm that the neurons in the
homogeneous network tend to synchronize, emitting pulses at almost the same
timing.
Figs. 9.12 (b-2) and (c-2) show the response of neurons in the heterogeneous
network, where the series resistances were set to 110 MΩ for neuron 1, 100 MΩ
for neuron 2 and 90 MΩ for neuron 3. The firing events in the heterogeneous
network are more or less random as shown in Fig. 9.12(b-2). The probability of
having a neuron with a potential near the threshold value, at any given moment, is
higher than in the case of a homogeneous network. Thus the network can respond
to any incoming pulses at a higer probability. This results in an improved
encoding of the input as illustrated by the spike train shown in Fig. 9.12(c-2). In
other words, since the neurons fired irregularly, they could transmit the input
pulses with a higher temporal precision as opposed to the homogeneous network.
This is elaborated in more detail in Fig. 9.13 (curves (b) and (c)), where the
transmission of signal over a wide range of frequencies is demonstrated. The
horizontal axis represents the frequency of input signals, while the vertical axis
shows the average firing rate (output frequency) for both neuron sets. In the case
of the homogenous network, since the neurons tend to synchronize with time,
their encoding frequency is the same as that of individual neurons. Contrary,
neurons in the heterogeneous network could correctly encode signals with input
frequencies up to 1 GHz, twice that of the homogeneous network. This
demonstrates that heterogeneity in the circuit parameters (presence of static
noises) plays an important role in improving the fidelity with which neurons can
encode signals with input frequencies far beyond the encoding capacity of
individual neurons.
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Figure 9.12: Transient responses of both homogeneous and heterogeneous net-
works. (a) shows the input signal. (b-1) shows the firing events of each neuron,
while (c-1) shows the summed pulse output for the three neurons in the homoge-
neous network. (b-2) shows the firing events, and (c-2) shows the summed pulse
output of the heterogeneous network.
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Figure 9.13: Output firing rate of an ensemble of neurons plotted against the input
pulse frequency. (a) and (b) show response characteristics of a heterogeneous
network simulated at a temperature of 10 K and 0.5 K, respectively. (c) shows
response characteristics of a homogeneous network simulated at 0.5 K.

9.3.3 Effect of dynamic noises

Hospedales et al. ([15]) investigated the importance of random noises in
improving the fidelity of signal transmission in the VOR. They concluded that
besides neuronal heterogeneity, externally induced noises also play an important
role in improving the network performance. These external noises could be as a
result of spontaneous increases or decreases of membrane potential due to firing
events in other neurons in the network. These changes are random and are often
referred to as dynamic noises. In the proposed circuit, effect of dynamic noises
was studied by considering thermally induced tunneling events in the network.
Curves(a) and (b) in Fig. 9.13 show the response characteristics of a network
simulated at 10K, and 0.5K, respectively. As the temperature increases, thermally
induced tunneling events in single-electron neurons increase, resulting in an
increase in the average firing rate in the network. This is illustrated by the
increased firing rate at a temperature of 10 K. Although this work suggests that
dynamic noises don’t play a critical role in increasing the maximum response
frequency of the network, they however, increase the fidelity with which the
network can sample input signals within the maximum input signal frequency
range determined by heterogeneity in the network elements. This is evident at
higher input frequencies, where the ratio of the output pulse rate to the input
pulse rate starts to roll-off rapidly. The roll off is compensated for by the dynamic
noises, which reduces the effect of waiting time in electron tunneling. This is
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Figure 9.14: Effect of static (variance) and dynamic noises (temperature) to the
correlation values in an ensemble of neurons fed with various input signal fre-
quencies: 500 MHz for (a), 400 MHz for (b) and 200 MHz for (c).
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further confirmed in section 9.3.4.

9.3.4 Effect of dynamic and static noises

To study the effect of both noises in the transmission fidelity of a heterogeneous
network, we calculated the correlation between the input and the output signals in
a network of 100 noisy neurons. The neurons were fed with a bias voltage of 8
mV, a sinusoidal input signal with a frequency (f) of 500, 400 and 200 MHz and
peak-to-peak amplitude of 1 mV above the bias voltage. The simulation results
are shown in Fig. 9.14 where f = 500 MHz for (a), f = 400 MHz for (b), and f =
200 MHz for (c). The horizontal axis shows the operation temperature (T), while
the vertical axis shows the variance (σ) of the series resistances with a mean value
of 100 MΩ. The scale of the color grading is shown on the right, with the light
shading representing a correlation value of 0.9, and the dark shading representing
a correlation of 0.6. From the results we observe that the network could produce
the maximum correlation value (Cmax) of 0.87 at a variance of 30 MΩ and a
temperature of 1.25 K, for the given set of circuit parameters and input signal
frequency of 500 MHz, Cmax of 0.89 at a variance of 25 MΩ and a temperature
of 1.75 K at an input frequency of 400 MHz, and Cmax of 0.88 at a variance of 20
MΩ and a temperature of 1.25 K at an input frequency of 200 MHz. This
confirms that the effect of static noises is more dominant in enhancing the fidelity
of transmission of high-frequency input signals.

9.4 Summary
To provide a basis for designing electronic circuits with mismatch-prone
single-electron devices, this chapter proposed and investigated the performance of
a bio-inspired 1-bit analog-to-digital converter. The circuit elements are coupled
to each other through a global inhibitory coupling. Through Monte-Carlo based
computer simulations, we demonstrated that the presence of static and dynamic
noises, and the global inhibitory coupling introduced into the circuit play an
important role in improving its noise-shaping properties. The signal to noise ratio
improved by 4.34 dB in the coupled network as compared to the un-coupled one.
In the second section of the chapter, we proposed and investigated the implication
of heterogeneity in transmission of high frequency signals in a neural network.
Through Monte-Carlo based computer simulations, we confirmed that
heterogeneity in device parameters indeed improved the temporal precision with
which the network could transmit signals with high input frequencies within the
network. A heterogeneous network could correctly encode signals of upto 1 GHz,
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as compared to 500 MHz in single neurons (or a network of homogenous
neurons). Another important factor to consider in improving the fidelity of this
circuit would be the effect of external and internal (dynamic) noises. In
single-electronic devices, such noises include thermally induced random firing
events or the effect of environmental noises. As we have shown, as the
temperature increases, the dynamic noises also increase compensate for the
roll-off in response of the network, especially at high frequencies. The
preliminary results presented in this chapter show that in addition to heterogeneity
in neuron properties, externally introduced noises could assist in further
improving the fidelity of signal encoding in single-electron circuits. We should
however, note that at higher temperatures, beyond the results presented here,
random tunneling as a result of dynamic noises would increase rapidly leading to
degradation of signal transmission. Therefore, the value of dynamic noises to be
introduced to the network to achieve the best performance needs to be optimized.
Before summarizing the chapter, it’s worth noting on similar promising works in
achieving robust electronic systems by utilizing noises in improving
signal-to-noise ratio in electronic systems. This approach has been demonstrated
with single-electron devices, and nanowire transistor networks [13]. The
architectures effectively employ stochastic resonance (SR) [3], and demonstrate a
viable novel approach to realizing robust systems in noisy environments.
Stochastic resonance is a phenomenon where weak signals can be retrieved from
a noisy output [14] by applying an optimal amount of random noise. Oya et. al.,
[4] proposed a single-electron neural network that utilizes SR in signal
transmission in neural networks, and successfully demonstrated that using SR
indeed improved the temperature performance of the circuit. Kasai et. al. [13]
experimentally investigated the performance of nanowire transistors with
variations in threshold voltages and operating in a noisy experimental setup. In
both cases, the effects of SR were investigated by setting the input signal to a
value lower than the tunneling (firing) threshold of the network elements. By
applying noises, network elements with non-zero inputs were induced to
tunnel—tunneling events synchronized with the input signal to a certain quantity
of noises. The authors showed that the SNR in their circuits was enhanced
through partially using noises.
Such innovative approaches, in addition to the neuromorphic methodology
described in this chapter would be indispensable in addressing reliability issues in
electronic circuitry with nano-electronic devices. From the investigation results,
we can conclude that by learning from biological systems: high levels of
redundancy where information processing depends on many neurons operating in
parallel, controlled signal transfer through excitatory and inhibitory synapses, and
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stochastic resonance mechanisms, we could get hints on how to design circuits
that perform better even in noisy environments and (or) with failure-prone
electronic devices.
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10
Summary

This thesis investigated the possibility of creating electronic circuits with
single-electron devices. Single-electron devices are viewed as promising devices
for use in the next generation of LSIs. This owes to their inherently low power
dissipation, and minute devices sizes that provide high device integration
capacities that can be utilized in creating high resolution sensors, and in parallel
information systems.
In this work, we first analyzed non-linear characteristics of dynamical systems
consisting of coupled single-electron devices. In the second part of the thesis, a
two-dimensional photon position sensor was proposed. This sensor utilizes the
high device density to obtain a high spatial resolution. It also employs non-linear
characteristics of coupled single-electron devices to enable transmission of
signals amongst individual device elements. This eliminates the need to fabricate
signal wires within the device, resulting in a compact sensor system.
In the third part of the thesis, we focused on obtaining hints from how living
organisms carry out signal processing to create noise-tolerant LSIs. We
considered two well studied retinal models to create an edge detection circuit and
a motion detection circuit. We further investigated the implication of noises
(static noises from device fabrication mismatches and dynamic noises from
thermally induced random tunneling events ) in actual fabrication of the proposed
circuit architectures. We proposed a novel method, where instead of getting rid of
the noises, we effectively employ such noises in signal processing. We confirmed
that employing such noises enhances the signal-to-noise ratio, and improves the
fidelity with which the circuits can transmit high-frequency signals.
Through Monte-carlo based computer simulations, we confirmed that indeed
single-electron device could be used to create highly efficient LSIs. Further more,
we confirmed that by exploiting noises, we can improve signal-to-noise ratios and
the fidelity of signal transmission.
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