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Introduction

Silicon circuits that mimic the nervous systems of in-
sects and other animals represent the future of neuro-
computing. They can perform various neural functions
because the microstructures of a nervous system are repli-
cated on their silicon chips. Since recent functional mod-
els of spiking neural networks tend to use spiking neu-
rons, neuromorphic engineers have developed CMOS neu-
ral systems with several types of spiking neural circuits
to investigate the effect of spike timing and synchrony on
the network’s computational properties. In this report,
we briefly review our recent collection of neuromorphic
circuits, which we call a neuromorphic CMOS family, as
well as its application to modern neural networks.

List of Present Neuromorphic CMOS Family

A. Spiking neuron circuit

We have developed several spiking neuron circuits con-
sisting of a small number of MOS devices operating in
their subthreshold region [1, 2]. A neuron circuit in [1]
was designed to be equivalent to the well-known Volterra
system where a simple nonlinear transformation of sys-
tem variables enables designing a neural oscillator. The
other neuron circuit [2] is equivalent to the Oregonator
that represents a model of the Belousov-Zhabotinsky re-
action and exhibits quite similar excitable behaviors to
the Hodgkin-Huxley neurons.

B. Depressing and Facilitating synapse circuits

In addition to the spiking neuron circuits, we have de-
signed a compact CMOS circuit for depressing and facili-
tating synapses to demonstrate useful applications of spik-
ing neural networks; i.e., contrast-invariant pattern classi-
fication [3] and synchrony detection [3, 4]. Although the
unit circuit consists of only five minimum-sized transis-
tors, it well emulates fundamental properties of depress-
ing synapses.

C. Bursting neuron circuit

Although the spiking neurons and depressing synapses
required for implementing modern neural networks have
been developed, bursting neural circuits that are suitable
for CMOS implementation have not yet been fully devel-
oped. We proposed a novel bursting neuron circuit based
on the Oregonator [4] to achieve compact and neuromor-
phic design for bursting neural circuits.

Applications of Neuromorphic CMOS Family
A. Neural Competition

Based on a model of neural competition [5], we have
demonstrated that a network of the Volterra spiking neu-
rons achieved robust and efficient neural competition on
the basis of a novel timing mechanism of neural activ-
ity [1]. We showed, through both experiments and com-
puter simulations, that the spiking neural network very
efficiently achieved a robust form of neural competition
that was based on spike timing rather than firing rates.

B. Contrast-Invariant Pattern Classification

Bugmann showed that the strength of a time-averaged
current injected into the soma by using a spike train tends
to be independent of its frequency, which implies that
the response strength of a target neuron depends only on
the number of active inputs [6]. To demonstrate this, we
designed a network circuit in which four synapse circuits
were connected to a neuron circuit, and compared the
operation of the prototype circuit with nondepressed- and
depressed circuit [3, 4].

C. Synchrony Detection

Senn showed an easy way to extract coherence infor-
mation among cortical neurons by projecting spike trains
through depressing synapses onto a postsynaptic neuron
[7]. We demonstrated that the depressing synapse circuit
was able to detect the synchrony in the burst times [4].
When the input bursts are not synchronized, the peak
EPSPs evoked by nondepressed and depressed synapses
were low. But, when the input bursts are synchronized,
the peak EPSP evoked by depressed synapses was signif-
icantly larger than the nondepressed synapses.
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