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Abstract. A novel reaction-diffusion cellular-automaton model that gen-
erates Turing-like spatial patterns is proposed. The model employs linear
diffusion fields of activators and inhibitors and a discrete transition rule
after diffusion. Theoretical analysis of the one dimensional model proved
that i) spatial distribution given by a periodic square function is stable
at the equilibrium and ii) the spatial frequency is inversely proportional
to the square root of a diffusion coefficient of the inhibitors. We also de-
signed LSI circuits that implement the RD model on a silicon chip that
has a compact construction and low-power consumption. Circuit sim-
ulations revealed that the proposed LSIs could restore stripe and spot
images in a short time regardless of the number of pixels in the image.

1 Introduction

In the process of ontogeny in a multicellular organism, the organism develops
from a fertilized egg into matured differentiated cell groups, through repeated
division/differentiates. Turing [1] suggested the concept of “Diffusion (driven)
instability” for phenomena in systems where diffusion is able to enhance tran-
sition from a homogeneous state to a spatially in-homogeneous stable state. In
his framework, time development in the system is described by the sum of re-
action and diffusion. The former represents local production/extinction of the
substance or state and the latter represents a transport process, which tends
to dampen any inhomogeneity of the neighboring region, called the reaction-
diffusion (RD) system. He gave an example where the spatial instability of a
spatial homogeneous structure could take place through the addition of the dif-
fusion effect. This Turing RD model is well known as one in which stable striped
or spotted patterns are generated.

There are many ordered complex patterns in nature. For example, we can
see patterns in animal skins where the patterns are formed spontaneously. Tur-
ing’s and modified RD models have been studied because of their significance
in explaining pattern formations on animal skins. Striped patterns can not only
be seen in animal skin but also human fingerprints. Fingerprint patterns give
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Fig. 1. Diffusion of activators and inhibitors on (a) continuous model and (b) discrete
model.

us important cues for distinguishing individuals. Recent progress with digital
microprocessors will certainly push advances in intelligent security systems that
recognize fingerprints patterns. This paper deals with the basic mechanism and
implementation of restoring striped/spotted patterns. We utilized spontaneous
pattern formation with the RD Turing model to design the hardware RD system
on a silicon chip that had compact and low-power construction.

2 Model and the Theoretical Analysis

We propose the use of RD systems as models for generating marking patterns on
animals. The RD system is a complex system in which the reaction and diffusion
of chemical species coexist under nonequilibrium conditions. It produces a variety
of orders, rhythms, and self-organizing phenomena observed in nature and in
life. Typical examples of such patterns are marking patterns on various animals,
which are referred to as Turing patterns [2, 3].

Turing patterns can usually be obtained by solving mathematical RD models
described by a set of partial differential equations (PDE) that are represented
by continuous spatiotemporal variables. Several attempts to reproduce Turing
patterns with limited computational resources have been made over the years
[4–9]. A typical example is the use of cellular automata (CA) where the space
is separated by a set of discrete cells, and time and cell state are represented by
discrete values. Gerhardt, Schuster and Tyson have discretized the RD model
based on chemical system [5, 6]; Markus and colleagues have shown the way to
avoid unisotropy of the pattern and described various shell patterns [7]; Weimar,
Tyson, and Watson have generalized CA model based on RD model and evalu-
ated CA in relation to PDE [8, 9]. In the way to construct CA model, simplifying
the nonlinear dynamics in a continuous RD model is a difficult task because the
differential equations are rewritten by conditional divergence rules in the CA.

Young [4] proposed a simplified discrete CA model for describing Turing
patterns. He introduced a discrete model for diffusion effects between chemical



substances and represented all the states (usually they had two variables; i.e.,
activators and inhibitors) with a single binary {1,0} variable. Then, he further
simplified the diffusion of the two chemical substances.

One necessary condition for generating Turing patterns is that activators
only influence their local neighbors (hard to diffuse), while inhibitors not only
influence their neighbors but distant cells (easy to diffuse). Figure 1(a) illustrates
the diffusion profile of activators and inhibitors in a continuous model, where
R represent the distance from the center of diffusion, R1 the position where
activators and inhibitors have the same concentration, and R2 the position where
the concentration of inhibitors is asymptotically zero. When R < R1, activators
and inhibitors produce “active effects” on the field because the concentration of
activators is higher than that of inhibitors. When R1 < R < R2, they produce
“inhibitory effects” because the concentration of inhibitors is higher.

Young simplified the effects on distance R as we illustrated in Fig. 1(b). In
his CA model, a cell whose state is “1” within R < R1 has positive effects W1,
while a cell whose state is “1” within R1 < R < R2 has negative effects W2. The
transition of a cell in position r is determined by the weighted-sum of cells within
R < R2 whose states are “1” expressed as

∑
|r−ri|≤R2

W , where W represents
the weight strength. If the summed value is zero, no transition occurs, while if
the value is positive (or negative), the subsequent state of the cell is set to “1” (or
“0”). This step transition rule corresponds to chemical reactions in continuous
RD models. Young showed that stripe patterns and then spot patterns appeared
on the CA with fixed R1, R2 and W1 by changing the value of W2. Surprisingly,
all the patterns became stable within 10 steps, even when random initial patterns
were given to the CA.

2.1 A modified RD CA model

In Young’s simplified CA, the diffusion terms in the continuous RD model are
represented by the weighted summation of neighboring cells, while the reaction
terms in the RD model are represented by the sign of the sum. Therefore, to
describe a cell’s transition, the cell has to refer to its neighboring cell’s states.
Since the number of neighboring cells is approximately calculated by π × R2 ×
R2, the number of physical connection wires (on CA hardware) to refer the
neighboring cell’s states increases significantly when R2 increases. Moreover, the
CA cannot generate spatially smooth patterns because step functions are used
in the cell transition rule. A promising solution to these problems is using a
discrete diffusion equation with a four-point spatial approximation method and
an analog sigmoid function in the rule instead of the step function. Based on
Young’s simplification, we propose a novel RD CA model that is suitable for LSI
implementation where a cell’s transition is determined by the sigmoid function
and weighted-summing computation is only restricted within the cell’s nearest
neighbors.

The weighted-summing computation described above is done by the diffu-
sion fields. In other words, activators and inhibitors diffuse in individual dif-
fusion fields and are then convoluted by a 2D array of cells. Each cell’s state



is determined by the difference between the concentration of activators, u, and
inhibitors, v, at a given spatial point, (x, y). Diffusion equations for variables u
and v are integrated for time δt. Then a cell’s subsequent state is determined by
the value of the sigmoid function for u− v. The dynamics can be formulated as

1. (Diffusion)
∂u(r, t)/∂t = Du∇2u(r, t),
∂v(r, t)/∂t = Dv∇2v(r, t),

2. (Reaction)
u(r, δt(n + 1)) = v(r, δt(n + 1)) = f

(
u(r, δt · n)− v(r, δt · n)− c

)
,

f(x) =
(
1 + exp(−βx)

)−1,

where n represents the time step, r = (x, y), c is the offset value of the sig-
moid function, and β is the slope of the function. We defined this sequential
operation as “one cycle”. In the following, we show that the system produces
spatiotemporal patterns by repeating this cycle.

2.2 Theoretical Analysis

We analyze operations for the proposed model in 1D space and reveal the relation
between the spatial frequency of equilibrium patterns and diffusion coefficients.

Since an impulse response of a diffusion equation is represented by the Gaus-
sian, that of u− v is given by a ‘difference of Gaussian’ (DoG) function:

DoG(x, t) =
1√
4πt

[
1√
Du

exp

(
−x2

4Dut

)
− 1√

Dv

exp

(
−x2

4Dvt

)]
, (1)

where x represents the space. Differential distribution u−v, after activators and
inhibitors are diffused for time δt, is thus given by

zn(x) ≡
∫ ∞

−∞
rn(x−X) ·DoG(X, δt) dX, (2)

where rn(x) represents an initial input to u and v at the n-th cycle. Therefore,
the dynamics of the proposed model can be represented by

rn+1(x) = f [zn(x)], (3)

where rn+1(x) represents the subsequent initial input. Assuming the equilibrium
state, we obtain

r∗(x) = f [z∗(x)], z∗(x) =
∫ ∞

−∞
r∗(x−X) ·DoG(X, δt) dX, (4)

where z∗(x) and r∗(x) represent the equilibrium distribution of u − v and the
resulting sigmoid outputs. Assume the equilibrium distribution is

r∗(x) =
{

1 (−a < x < a)
0 (else), (5)
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Fig. 2. DoG responses of proposed model for single square-pulse input.

where a > 0. For this input, we obtain

z∗(x) =
∫ x+a

x−a

DoG(X, δt) dX, (6)

=
1
2

[
erf

(
x + a

pu

)
− erf

(
x− a

pu

)
− erf

(
x + a

pv

)
+ erf

(
x− a

pv

)]
, (7)

where pu,v ≡
√

4Du,vδt and erf(·) represents the error function. To ensure that
input r∗(x) is stable, z∗(x) must be positive for −a < x < a, and be negative for
other x. Figure 2 plots function z∗(x) for given r∗(x) when Du = 0.01, Dv = 0.1,
δt = 0.01, and a = 0.2. In this example, we see that the sign of z∗(x) for the
center (x ≈ 0) and surrounds (|x| > a0 in the figure) is indefinite because of
z∗(x) ≈ 0 in these regions. This results in unstable r∗(x) at x ≈ 0 and |x| > a0.

An error function can be represented in the form of a normal (Gaussian)
distribution

erf(x)
2

=
∫ √

2σx

0

1√
2πσ

exp
(
− y2

2σ2

)
dy, (8)

where σ2 represents the variance. Using the 3σ law of the Gaussian, we can
approximately obtain the values of x where z∗(x) ≈ 0 as

x = −a− 3pv√
2

, −a +
3pv√

2
, a− 3pv√

2
, and a +

3pv√
2

, (9)

which indicates that the region −2a ≤ x ≤ 2a of r∗(x) is stable as long as
a ≤ 3pv/

√
2 (≡ ac). Therefore, for a periodic square-wave input,

r∗(x) =

{
1

(
(4n− 1)a < x < (4n + 1)a

)
, (n = 0,±1,±2, . . .)

0 (else),
(10)

whose primary spatial frequency f0 is given by 1/4a, we conclude that a square
wave of f0 ≥ 1/4ac =

√
2/12pv is stable in the subsequent cycle.
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Fig. 3. Pattern formation on 1D model.

For periodic waves of f0 < 1/4ac, regions of x where z∗(x) ≈ 0 will exist,
which results in r∗(x) ≈ 0.5 (not 0 or 1). We estimate this region by employ-
ing piecewise linear function fpwl(·) instead of sigmoid function f(·). Because
df/dx|x=0 = β/4, we obtain

f(x) ≈ fpwl(x) ≡




βx/4 + 0.5 (−2/β ≤ x ≤ 2/β)
1 (x > 2/β)
0 (x < −2/β),

(11)

which means that r∗(x) will not take 0 or 1 when −2/β ≤ z∗(x) ≤ 2/β. There-
fore, the value of x where z∗(x) = ±2/β determines stable wave frequency. To
calculate this, we considered the following z∗(x),

z∗(x) =
1
2

[
erf

(
x + a

pu

)
− erf

(
x + a

pv

)]
, (12)

around x = −a for simplicity. When the argument of the error function is large,
the following asymptotic expansion can be used:

erf(x) ≈ 1− 1
x
√

π
exp(−x2). (13)

Therefore, when pu ¿ pv (du ¿ dv), one has

z∗(x) ≈ 1
2
√

π

[
pv

x + a
exp

(
− (x + a)2

p2
v

)]
. (14)

The value of x where z∗(x0) = 2/β is thus given by

x0 = pv

√
F (2/k2)

2
− a, (15)



Fig. 4. Snapshots of stripe-pattern formation observed with our proposed model.
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Fig. 5. Pattern diagram for proposed RD model.

where k ≡ 4
√

π/β and F (·) represents the inverse function of Lambert’s W func-
tion. Therefore, we can conclude that i) r∗(x) is not stable when the wavelength
is larger than 2x0 and ii) the stable wavelength is proportional to pv (square
root of Dv).

Figure 3 has the simulation results for δt = 0.01, Du = 0.01, Dv = 0.1 and
β = 104 with a cyclic boundary condition. Step input was given at the initial
cycle. After a few iterations, a stable square wave appeared. The primary spatial-
frequency agreed well with the theoretical prediction (f0 = 0.5x0). Furthermore,
by changing the values of Dv, we numerically confirmed that the equilibrium
wave frequency is inversely proportional to the square root of Dv.

Figure 4 is an example of striped pattern formation on a 2D model (Dv/Du =
β = 10, c = 0, δt = 1). The values of f

(
u(r, δt · n) − v(r, δt · n) − c

)
are

represented on a grayscale (f(·) = 0: black, f(·) = 1: white). The initial state was
randomly set within the values of [0:1]. After approximately 10-cycle updates, a
stable striped pattern was generated. The space was filled with striped patterns
according to the initial spatial distribution. Therefore, if a striped pattern such
as a fingerprint pattern is given to the CA, local patterns that do not fit the



striped global patterns are replaced with striped patterns based on the global
patterns.

Figure 5 shows a pattern diagram for two variable parameters (Dv/Du and
c). When the value of c was increased, the resulting patterns changed from black
spotted to white spotted via the stripe patterns. Also, the spatial frequency
could be controlled by the value of Dv/Du. That is, we can control the form of
target patterns (spotted or striped) and the spatial resolution with these two
parameters.

Physically, parameter c represents a total balance of activators u and in-
hibitors v in the model. When c > 0, v is predominant over u because the values
of u must be larger than that of v+c to ensure f(u−v−c) > 0.5, and vice versa
when c < 0. This can easily be confirmed from Fig. 5 where the area occupied
by inhibitors (black areas) is equal to the area occupied by activators (white)
when c = 0, while inhibitors (black areas) become predominant as c increases.

3 RD Chip Architecture

We designed an RD chip for the RD model described in the preceding sec-
tion. The basic concept was the use of a CA structure where i) each cell circuit
had state memories and a diffusion circuit, and the differential amplifier had
a sigmoidal response function, and ii) each cell was only connected to nearest-
neighbor cell circuits to reduce the complexity of wiring.

Figure 6 illustrates the unit cell circuit we propose. It consists of a main
memory circuit for the state variable (Cm1 and Cm2 with master-slave memory
structure), a temporal memory (Cma), a diffusion circuit with floating gates
(FGs), a differential amplifier that has a sigmoidal response function (DIF),
three buffering circuits (voltage followers labeled VF1-VF3), and five transfer
gates.

Let us first describe the operations of the diffusion circuit. Let Vc and Vfg

denote the voltage stored in a cell’s main memory and that of the FG, respec-
tively. If the initial charge, Q0, of the FG is zero and the input gate capacitance
of VF1 (Cox) is much smaller than the capacitance of control gates C, then Vfg

is given by

Vfg =
Vn + Vw + Vs + Ve + 4 Vc

8
, (16)

where Vn, Vw, Vs, and Ve represent the voltages stored in a neighboring cell’s
main memory. Assuming that each cell can store Vfg in a memory circuit, we
obtain

V (t + ∆t)− V (t)
∆t

=
Vn + Vw + Vs + Ve − 4 V (t)

8∆t
, (17)

where Vfg = V (t+∆t) and Vc = V (t). This equation corresponds to the diffusion
equation

∂V (r, t)/∂t = D∇2V (r, t), (18)
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Fig. 6. Construction of unit cell circuit.

when the discrete space is represented on a square grid (h ≡ ∆x = ∆y and D =
h2/(8∆t)). Therefore, by storing Vfg in memory and updating this repeatedly,
the circuit can solve the discrete diffusion equation. The circuit employed a
master-slave analog memory for safe memory updates where the master and
slave operations were controlled by CLK1 and CLK2.

Our RD model, as it stands, requires two diffusion fields for variables u and
v. Therefore, we propose a novel circuit architecture that has the same operation
as our model using only one diffusion circuit. The diffusion coefficient and time
are always represented in the solution to diffusion equations in the form of D · t,
which indicates that diffusion and time are interchangeable. For example, let us
assume Dv/Du ≡ ∆t0/∆t1, and after diffusion for ∆t0 in one diffusion field, the
diffused state is stored in a temporal memory, (Cma). The memorized voltage is
further diffused for ∆t1 −∆t0. At this time, the voltage in the main memory is
equivalent to the voltage after diffusion with Dv for ∆t0. Since temporal memory
Cma stores the voltage after diffusion with Du for ∆t0, one can obtain a diffused
distribution for ∆t0 with different diffusion coefficients Du and Du, with one
diffusion circuit and a temporal memory.

After one-cycle diffusion for ∆t0, the voltage stored in the main and temporal
memories is supplied to the differential amplifier (DIF), which has a sigmoid
transfer function. By employing FG MOSFETs in the differential pair, we can
control offset value c for the sigmoid function. It should be noted that parameter
β in the sigmoid function determines the smoothness of generated patterns. If
β → ∞, the function becomes a step function, which implies that the resulting
patterns will not be smooth. The value of β is determined by the rate of FG
capacitances for input and control gates, and cannot be controlled after the chip
has been fabricated. The output of DIF is stored in Cm1 by CLK5 evoked in the
subsequent step. CLK3 is a control clock that captures an initial voltage, which
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is produced by the photodiode or electrostatic sensors mounted on each cell, in
the main memory circuit.

The cell circuit was designed by assuming a standard n-well double-poly
double-metal CMOS process for fabrication. Figure 7 shows the layout (λ rep-
resents the scaling parameter).

4 Simulation Results

We simulated the operations of a 2D array for the proposed cell circuit (180×180
cells). The circuit parameters were C = 100 fF, Cox = 1 fF, Cm1 = Cm2 = Cma

= 100 fF, and Dv/Du = 10. One cycle in the simulation was performed in 80
steps (8 steps for diffusion with Du and 72 steps for Dv). The chip required 2
clocks for one-step operation because of master-slave memory operation.

Figure 8(a) has snapshots of pattern formation in the circuit. We could esti-
mate that the system produces striped patterns when c = 0 from Fig. 5. There-
fore, we used a fingerprint pattern as an initial input. We confirmed that noisy
local patterns were repaired by their surrounding striped patterns, as time in-
creased. The circuit required 50 cycles (8000 clocks) to reach equilibrium. Figure
8(b) shows the results for c = 0.16 (offset voltage of DIF was set at 0.16 × Vdd).
The same initial input as in Fig. 8(a) was given to the circuit. As expected
from Fig. 5, spotted patterns were obtained. The pattern formation process was
the same as in Fig. 8(a) where noisy local spots were restored by surrounding
global spotted patterns. Therefore, this circuit would be suitable for restoring
regularly-arranged spotted patterns such as polka-dot patterns. The system took
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Fig. 8. Snapshots of pattern formation from initial fingerprint image.

100 cycles (16,000 clocks) until it reached equilibrium to restore the spotted pat-
terns.

The number of cycles for generating equilibrium patterns only depends on
the width of the stripes (radius of spots), and is independent of image size. This
implies that the power consumed by repeating these calculations is significantly
reduced when the number of pixels increases. Buffers and differential amplifiers
can be turned off during static periods in the system clock to reduce static power
consumption in a cell. These properties enabled us to develop a low-power LSI
to restore striped and spotted patterns.

5 Summary

We proposed a novel RD model that is suitable for LSI implementation and
its basic LSI architecture. We developed image-processing LSI circuits based on
pattern formation in reaction-diffusion (RD) systems. We introduced continuous
diffusion fields and an analog state variable to Young’s local activator-inhibitor
model [4]. We produced a model pattern diagram on a 2D parameter space
through extensive numerical simulations. We showed that the spatial frequency
and form (striped or spotted) could be controlled with only two parameters. We
then designed a basic circuit for the proposed model. We designed an RD LSI
based on the analog computing method where the concentration of chemicals was
represented by a 2D voltage distribution and the cell voltage was diffused step by
step. By mimicking two diffusion fields with the proposed model in one diffusion
circuit on the LSI, we reduced the area of the unit cell circuit. We confirmed the



operations of the LSI were as expected through circuit simulations. Finally, we
demonstrated fingerprint image restoration on the LSI and that it successfully
restored smooth striped and spotted images from noisy input images.
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