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Abstract—1,000 fps motion vector estimation and classification
engine for highspeed computational imaging in a 3D stacked
imager/processor module is proposed, prototyped, assembled, and
also tested. The module features 1) ThruChip interfaces for high
fps image transfer, 2) orders of magnitude more area/power
efficient motion vector estimation architecture compared to con-
ventional ones, and 3) a cognitive classification scheme employed
on motion vector patterns, enabling the classification of moving
objects not possible in conventional proposals.

I. INTRODUCTION

Computational imaging is a state-of-the-art digital imaging
technology that captures and processes numerous image snap-
shots to invent perceptually meaningful representation of our
visual world (Fig. 1 left). Difficult challenge in computational
imaging is to achieve both high-speed imaging, which enables
capturing motions not being able to see with human eyes, and
low-power image processing. In this paper, we propose a 3-
D stacked module for such high-speed computational imag-
ing applications consisting of our low-power CMOS imager
[1] and an image-processor die where image snapshots are
transferred to the low-power image processor via high-speed
ThruChip Interfaces (TCIs) [2] utilizing inductive-coupling
between numerous numbers of coils on each die (Fig. 1 right).

II. PROPOSED ALGORITHMS AND ARCHITECTURES

Our target, in terms of the computational imaging, is hard-
ware motion-vector estimation and its cognitive classification.
The key idea is to reduce computational power of motion
vector estimation (block matching) in the image processor
by utilizing high-speed imaging and high-bandwidth image-
data transfer between the imager and processor with TCIs, as
illustrated in Fig. 2, based on the fact that movement of real-
world subjects on image sensors tends to be limited within 1
pixel under high fps condition. Computational cost of pattern
search process (∼ search area) in block matching is obviously
reduced as sampling frame-rate increases, since the inter-frame
difference is decreased as the frame rate increases.

The minimum computational cost of block matching is
obtained under a minimum macro block of 3×3 pixels and
search area of 5×5 pixels (corresponding to 1-pixel search
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Fig. 1. Overall concept of proposed imager/processor 3D stacked module.
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Fig. 2. Concept of 1-pixel search-range block matching under high-speed
imaging environment.

range), as shown in Fig. 2 right. Although conventional block-
matching hardware employs much larger search ranges (e.g.,
a few (Fig. 2 left) to a few tens ∼ hundreds in [3], [4]),
we choose the minimum (1-pixel) search range intentionally
because high-speed imaging (1,000 fps and more) enables
motion-vector estimation even with the minimum search range.
Table I compares simulated PSNR values (precision of motion
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TABLE I. COMPARISON OF COMPUTATIONAL COST AND PRECISION.

CPU� Xeon E5-1660 v2 (3.7GHz)�

Macro block 8×8 / 3×3  ([5] / proposed)�

Search range 7 / 1 ([5] / proposed) 

Camera fps 30 / 1,000 ([5] / proposed) 

BM algorithm� Avg. PSNR 
(dB)�

Avg. relative 
runtime�

Proposed� 22.6� 1�

FSA [5]� 16.6� 22.2�

SESTSS [5]� 15.6� 2.5�

NTSS [5]� 16.3� 2.8�

DS [5]� 15.9� 5.9�
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Fig. 3. Architecture of 1-pixel search-range block-matching module.

vector estimation) and averaged relative runtime (computa-
tional cost) of conventional block matching methods under
30 fps imaging [5] and the proposed scheme, which indicates
that the proposed method exhibits major advantages in both
precision and cost of motion vector estimation.

Figure 3 illustrates our proposed architecture of motion-
vector estimator implementing the 1-pixel search-range block-
matching method. The circuit accepts 14-bit data per pixel
(12-bit pixel data plus 1-start and 1-stop bits) sequentially from
an imager via TCI. The data are de-serialized to 8-bit depth
values, and then are transferred to a line buffer where a part
of present frame data is stored in this buffer. The data are
further transferred to the multi-port SRAM storing previous
frame data, and then forwarded to 3 register chains (Z−1s in
Fig. 3 middle). The register chain constructs a macro block
buffer of 3×3 for block matching, and absolute differences
(|∆|s) between the pixel values in the line buffer and the
block buffer are calculated by nine |∆| units in parallel, and
then the most plausible vector having the minimum |∆| value
is selected. Since block matching with minimum (1-pixel)
search range gives 8 vectors with magnitude 1 and zero vector
only, to obtain multi-level magnitudes of motion vectors, one
has to integrate the vectors in time. Instead of employing
conventional digital integrator that requires additional frame
buffers, we employ a leaky integrator that can be implemented
by conventional digital low-pass filters (LPF). With this con-
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Fig. 5. Architecture of proposed motion-classification subsystem implement-
ing on-/off-chip feature extractors.

struction, the motion-vector output is sequentially generated,
and is represented by temporal sequences in 12-bit vector form
(Vx, Vy).

The motion vectors are transferred to the motion classifi-
cation subsystem shown in Figs. 4 and 5. Our classifier recog-
nizes subject’s motions, e.g., rotation, zooming in/out, anomaly
movement, etc., based on our machine-learning scheme [6]
where we employ a part of brain-like structure to recognize
motion in the image sequences by using motion vectors.
Features in the motion-vector space are extracted by hardware
neural circuits based on neurophysiological structures in vi-
sual cortex (V1) for generating orientation-selective map and
middle temporal cortex (MT) for motion extraction and the
subsequent cognitive processing, as shown in Fig. 4.

In the proposed motion classification system and architec-
ture (Figs. 4 and 5), motion vectors (after integration by digital
LPF) are forwarded to vector direction-magnitude encoder to
adapt motion vectors to neural sparse representation. Then the
sparse data is given to a feature extractor, which finds the
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Fig. 7. 3D stacked module (board) snapshot, and system specification

most similar vector among 8 possible directional candidates,
and determines dominant combinations of 2-major motion vec-
tors in each block, through extensive parallel voting process.
Registers in the feature extractor, denoted by “(reg)” in Fig.
5, represent the voting box, and after the voting process, the
most similar and dominant combinations are selected in each
block. The selected values are normalized by conventional
normalizer to 0∼1 (13-bit unsigned fixed point values), and
then scaled to -1∼1 (13-bit signed fixed point values). Finally,
the scaled values are sent to a linear classifier that calculates
weighted-sum of the scaled values and off-chip weight vales,
accumulates them, and threshold the results.

III. EXPERIMENTAL RESULTS

Figure 6 exhibits chip micrographs of our imager chip hav-
ing data-transmitter TCI (left), which has previously presented
in [1], and our motion vector estimator and classifier chip
having data-receiver TCI (right, this work). Figure 7 shows
a photograph of the fabricated 3-D stacked board, including
the system performance summary table. The gate count was
significantly reduced by 97∼99 % as compared to [3] and
[4]. Due to our chip I/O and present experimental restrictions,
we evaluated the chip and 3-D module at maximum 100 MHz
transfer clock (187 fps with 200×200 pixels; 100 MHz / 14-bit
= 7.1 MHz system clock) only, although the chip is designed
to operate at transfer clock of 560 MHz, which will result in
1,000 fps at 200×200 image resolution.

Figure 8 exhibits raw motion-vector outputs of the motion
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Fig. 8. Motion-vector examples estimated by our 3D stacked module before
LPF processing (8 directions and 1 stationary outputs only).
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Fig. 9. Results of motion-vector integration by digital LPF with 200 pixel/s
movements.

vector estimator on our 3-D stacked module. Motion sequences
were captured by our imager (top chip), and then transferred to
the processor (bottom chip) via TCI, and the bottom chip pro-
duced the vector outputs (the bottom pictures represent vectors
before integration by digital LPF). Since the vectors shown in
Fig. 8 bottom are raw vectors before vector integration by LPF,
some error vectors, which can be attenuated by the LPF, were
observed. Time courses of motion vectors [Vx(t), Vy(t)] after
on-chip LPF processing were shown in Fig. 9 for 8 different
movements (200 pixel/s) of dark edges shown in the center.
Smoothed vectors were successfully obtained, which resulted
in smoothed motion vectors [Vx(t), Vy(t)], as shown in Fig.
10.

Figure 11 exhibits 6 examples of motion classification that
our system was able to recognize. The training was conducted
offline, i.e., we prepared datasets of various motions, and
trained the classifier model on PC. The trained weights were
transferred to the off-chip shared flash memory. Due to chip
size limitation, we could implement one feature extractor on
the chip, and the rest extractors were implemented on FPGA
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Fig. 11. Examples of tested motion-classification environment.

as expanding units, as shown in Fig. 5.

Table II shows a comparison table between state-of-the-art
VLSIs [7], [8] and the proposed classifier, indicating 2 major
advantages against them. First, their classification targets are
static image, whereas the proposed system is able to handle
dynamic image (motion). Second, although the number of
input neurons of the proposed system was larger than that of
[7], [8] by two orders of magnitude, power dissipation of the
proposed system was lower than that of [7]. In our system,
90 % of the feature extractor was implemented on FPGA.
Therefore, when all the feature extractors are implemented on a
chip, the power dissipation will further be decreased. Since our
classifier TEG (37-input feature extractor, normalizer, scaler,
and linear classifier) consumed 7.2 mW@100 MHz transfer
clock (7.1 MHz system clock), and the feature extractor con-
sumed around 15 % of the total gate counts, we could estimate
power dissipation of the single on-chip feature extractor as
1.1 mW. The FPGA feature extractor handles 3,700 inputs,
therefore, if all the extractors are implemented on the chip,
the estimated total power dissipation becomes 110 mW.

TABLE II. COMPARISON BETWEEN PROPOSED AND LATEST
NEURAL-NET-BASED HARDWARE CLASSIFIERS.

ISSCC 2014 
[7] 

ISSCC 2015 
[8] 

This work 

Process 65nm 1P8M 
CMOS 

180nm 1P6M 
CMOS 

180nm 1P6M 
CMOS+FPGA 

Target Static Image 
(HMD Apps) 

Static Image 
(Seizure) 

Image Seq. 
(Motion) 

Power <778 mW N/A <7.2 mW /  
<497 mW 

Gate 
count 

8.32M N/A 32k (nand2) / 
29k (ALUT) 

# of input 16 16 37 / 3,700 

Classifier Multi-layer 
Perceptron 

Linear SVM Linear SVM 

IV. CONCLUSION

This paper has demonstrated that high fps image snap-
shots are the enabler for area/power efficient motion-vector
estimation and classification systems. We previously showed,
on the other hand, it is feasible to employ TCIs in high speed
imagers since their noise interference is negligible when coils
are placed in a right manner [2]. We hence conclude 3D
stacking of imager/processor using TCIs, requiring just metal
coils instead of costly TSVs, can become an attractive solution
for high-speed computational imaging applications.
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