Caching Memcached at Reconfigurable
Network Interface

Eric S. Fukuda*, Hiroaki Inoue’, Takashi Takenaka', Dahoo Kim*,
Tsunaki Sadahisa*, Tetsuya Asai*, and Masato Motomura*
*Graduate School of Information Science and Technology
Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
Email: {fukuda@lalsie., kim@Ilalsie., sadahisa@lalsie., asai@, motomura@ }ist.hokudai.ac.jp
NEC Corporation,
1753 Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8666, Japan
Email: {takenaka@aj, h-inoue@ce}.jp.nec.com

Abstract—Memcached is a technology that improves response
speed of web servers by caching data on DRAMs in distributed
servers. In order to achieve higher performance, memcached has
been evaluated on various platforms. Among them, FPGA seems
to be the most efficient platform to run memcached, and several
research groups are trying to achieve higher throughput with
it. However, it is difficult to utilize a large amount of memory
(several dozen gigabytes) with an FPGA. Some groups are trying
to solve this problem by using an embedded CPU for memory
allocation and another group is employing an SSD. Unlike other
approaches that try to replace memcached itself on FPGAs, our
approach augments the software memcached running on the host
CPU by caching its data and some operations at the FPGA-
equipped network interface card (NIC) mounted on the server.
The locality of memcached data enables the FPGA NIC to have
a fairly high hit rate with a smaller memory. We first explore
the cache parameters by software simulations and estimate the
effectiveness of our approach, and then prototype a system to
prove its effectiveness. Through our evaluation with YCSB, a
standard key-value store (KVS) benchmarking tool, we estimate
that the latency improved by an order of magnitude over software
memcached running on a high performance CPU.

I. INTRODUCTION

Web service providers that have tremendous amounts of
user and other information are eager to facilitate new technolo-
gies that enable their servers to handle more data traffic. One
such technology employed by many web service providers is
key-value stores (KVSs). A KVS holds data (values) with keys
uniquely assigned (key-value pairs; KVPs), and sends them out
as the data (value) is requested with the corresponding key.
For its speed of finding the requested data in contrast to tra-
ditional relational database management systems (RDBMSs),
many web service providers are now using KVS databases
such as DynamoDB at Amazon [1], Bigtable at Google [2],
memcached at Facebook [3], [4], and many others. Memcached
[5] is a technology that reduces the latency of data retrieval
by storing KVPs in distributed servers’ memories instead of
fetching from the hard drives of database servers. Its simple
data structure and computation have led to its wide adoption
by various web service providers.

Memcached is used not only by Facebook, but also by
a number of major web service providers such as Wikipedia
and YouTube [5]. According to Facebook’s research on their
own memcached workloads, they use hundreds of memcached
servers [3]. In view of such extensive use, improving the

memcached performance would have a large impact on web
services’ response. In fact, researchers have investigated the
suitability of various hardware platforms for running mem-
cached, from multiple low power CPUs [6]-[8] to many-
core processors [9] and FPGAs [10]. Meanwhile, FPGA-
based memcached systems are outperforming high perfor-
mance CPUs such as Intel® Xeon® by an order of magnitude
[11].

Although these efforts have improved the performance of
memcached, major challenges remain. One such challenge is
that it is difficult for FPGAs to efficiently manage a large
memory size. Memcached servers usually have a few dozen
gigabytes of memory, and such a memory space is too large
for an FPGA to efficiently manage [12]. One group is trying
to handle large memory size by utilizing a CPU core that is
embedded in the FPGA [11]. The FPGA invokes the CPU to
allocate or reallocate some blocks in the memory and stores
data there. Another group employed an SSD to enlarge the
memory space using a DRAM as a cache [13].

In this paper, we propose a method that makes possible a
low latency hardware memcached system with less memory
than others require. Our method caches the subset of data
stored in software memcached running on the host CPU at
the network interface card (NIC) equipped with an FPGA and
a DRAM memory. When the server receives a request from
a client, the NIC tries to retrieve the data within the DRAM
and sends it back if the data is found. If not, the NIC passes
the request to the host CPU and the CPU executes the usual
memcached operation. Since memcached data has locality, the
NIC requires only a fraction of the amount of memory that the
host server has. Furthermore, the commands the NIC cache
does not support can be delegated to the host CPU; therefore
only the frequently used memcached commands have to be
supported on the NIC.

Our contributions in this paper are as follows:

e We propose a method that reduces the delay of mem-
cached by caching the memcached data at the NIC
mounted on the server.

e We explain how the subset of memcached functional-
ities should be implemented on the FPGA equipped
NIC in order to maintain data consistency between the
NIC and the host CPU.

e We verify the improvement of the performance with a
standard evaluation tool that is capable of evaluating

)
j
‘ oueracoess
Web server [“=~"""""] . F B,
DRAM DRAM DRAM

Memcached servers

First access

Database servers

Fig. 1. The operation of memcached.

various KVSs.

Although we focus on proving the effectiveness of our
NIC caching architecture with memcached, it is important to
note that this architecture can be applied to many other server
applications that require lower latency as long as the data has
temporal locality.

II. BACKGROUND
A. Memcached

Memcached is a kind of KVS database and caches data
on memories of distributed servers in the form of key-value
pairs. As Fig. 1 shows, memcached servers store the subset of
data stored in the database servers, which usually use hard
drives, in order to allow faster data access from the web
server. Memcached servers often have a few dozen gigabytes
of memory each and run in a cluster of several hundred servers.
Data are not stored in the memcached server at the beginning,
and the web server has to get the data from the database
servers. The web server sends the data back to the user and also
sends a SET request with a paired key (250 bytes or smaller)
and value (1 MB or smaller) to memcached to store the data.
When the web server needs the same data later, it sends a
GET request with the key to the memcached server, and the
memcached server returns the value to the web server. Data
that are not accessed frequently on the memcached server are
evicted when the capacity is full. If the web server sends a GET
request for data that has been already evicted, the memcached
server notifies the web server that a cache miss has occurred.
The web server will then check the database server and SET
the data to the memcached server again.

Table I is a list of memcached commands. GET, SET and
DELETE are the commands that are mainly used, and GET is
the most frequently used command among them. According to
a paper that reports the details of the memcached workloads
of Facebook [3], the ratio of GET, SET and DELETE is
30:1:14 (exact ratio of DELETE not being provided in the
paper, we estimated it visually from the chart). Therefore, the
investigations we look through in Section II-B usually support
only the GET, SET and DELETE commands.

TABLE 1. MEMCACHED COMMANDS
[Command | Operation |
SET Store a KVP.
ADD Store a KVP if the key is not found.
REPLACE Replace a KVP if the key is found.
APPEND Append data to a stored value.
PREPEND Prepend data to a stored value.
CAS Overwrite a value if the KVP is unchanged since last reference.
GET Retrieves a value with a key.
GETS Get a CAS identifier while retrieving a value with a key.
DELETE Removes an KVP.
INCR/DECR | Increment or decrement a value.
STATS Get an report of the memcached server statistics.

Memcached server

Cache Cache part
part of the of the data
functionalities

Network -

NIC

Fig. 2. The basic idea of the proposed method.

B. Related Work

Berezecki et al. evaluated the performance of memcached
running on Tilera’s TILEPro64 processor, which can allocate
computations to its 64 cores [9]. Examining several config-
urations of cores running operations such as Linux kernel,
network operations and others, the throughput per watt attained
a maximum 2.4-fold increase over Xeon. However, the latency
remained the same or worsened slightly from Xeon’s 200 - 300
ps to TILEPro64’s 200 - 400 ps.

Chalamalasetti et al.’s work was the first to try to uti-
lize FPGA for accelerating memcached [10]. The system
mainly consists of two parts, a network processing part and
a memcached application part. The network processing part
extracts memcached data from incoming packets and gives
them to the memcached application part, and also does the
reverse. Receiving the data from the network processing part,
the memcached application part calculates hashes from the
keys in order to determine the memory address at which the
KVPs are stored and writes to or read from the memory.
The performance of memcached improved dramatically in this
scheme: throughput per watt attained 4.3-fold over Xeon and
the latency became 2.4 to 12 ps.

Blott’s group further improved the performance of mem-
cached running on an FPGA by improving the UDP offload
engine and adopting dataflow architecture [11]. They achieved
more than 15-fold higher throughput per watt than a Xeon and
a latency of 3.5 to 4.5 ps. This work is unique in that it uses
a CPU for allocating the memory.

Another approach was proposed by two groups almost
coincidently [7], [8]. Through dynamic analysis of memcached
codes, they found that instruction cache misses or low branch
prediction success rates caused by the frequent call of the
network protocol stack, kernel and some library codes were
the bottleneck. Their approach to get rid of this bottleneck was
to replace the network process and some of the memcached
process (GET request handling) software codes with hardware
and integrate it into an SoC with a CPU core. This method was
evaluated on an FPGA that had an embedded CPU core and
yielded 2.3 to 6.1-fold higher throughput per watt than a Xeon.
Our method is close to [7] and [8] in the sense that we execute
part of the memcached process on hardware. However, we do
not share the memory between the memcached hardware and
the CPU, and thus the memory control of our method is much
simpler.

To gain a larger storage size on hardware memcached,
Tanaka and Kozyrakis employed a solid-state drive (SSD) in
their FPGA based system [13]. Their approach is to store KVPs
in the SSD on the FPGA board, using the DRAM on the same
board as a cache. They achieved 14-fold higher throughput, 5-

YCsB NIC cache

(Workload simulator
generator) |«—

memcached

Fig. 3. Connection of software modules.

to 60-fold low latency and 12-fold higher throughput per watt
than a Xeon.

Recently, a commercial memcached appliance that can
be used in practice has been developed [14]. This appliance
achieved 9.7-fold higher throughput than a Xeon by using a
CPU and multiple FPGAs while the latency was 500 ps to 1
ms, which is larger than for a Xeon. Its throughput per watt
has not been publicly announced.

III. CONCEPT OF NIC CACHE

The basic idea of our method is to cache part of memcached
server’s data and functionalities to the NIC mounted on the
same computer. According to Facebook’s investigation into
their own memcached workloads, there is some locality of
access to their data [3]. On top of that, Facebook’s investigation
also indicates that among all memcached commands, SET,
GET and DELETE account for most of the requests. This
means that reducing the processing latency of only frequently
accessed data should have a large impact on the web server’s
performance. The nearest place to the web server in the server
computer on which memcached is running is the network
interface. Therefore we try to efficiently reduce the latency by
caching frequently used data and functionalities (SET, GET
and DELETE) at the NIC and leaving the less frequently used
data and functionalities to be handled by the host CPU. The
NIC we assume to use has a fast connection to the network
(several tens of Gbps), an FPGA, gigabytes of memory, and a
fast connection to the host CPU (Fig. 2).

The FPGA on the NIC can be designed to perform various
cache behaviors. The following description is an example of
the processing policy of the NIC:

SET: The NIC stores the KVP to its DRAM and sends back
a reply notifying the web server whether the KVP was properly
stored. If a KVP already stored in the DRAM becomes evicted,
a SET request with the evicted KVP is sent to the host CPU
(write-back, write-no-allocate).

GET: If the key in the request is found in the NIC, the
NIC returns a reply message with the corresponding value to
the web server. Otherwise, the NIC sends the request to the
host CPU, and the CPU searches for the key and returns it to
the NIC. After the KVP is cached to its DRAM, it is sent back
to the web server (read-allocate). If the key was not found at
the CPU, it returns a reply notifying the web server that the
key did not exist.

DELETE: If the key in the request is found in the NIC,
it is invalidated and the request is sent to the host CPU. The
CPU invalidates the data and returns a reply to the web server
notifying that the KVP was successfully deleted.

IV. CACHE SIMULATION
In this section, we evaluate the NIC cache concept over
software simulation in order to estimate its effectiveness. We
implemented a cache simulator that behaves as mentioned in
Section III. Test workloads were generated by Yahoo! Cloud
Serving Benchmark (YCSB), a standard benchmarking tool for
KVS [15]. YCSB, cache simulator and memcached was placed

as shown in Fig. 3. Requests generated by YCSB are sent to the
cache simulator and the cache simulator processes the requests
as described in Section III, backed up by real memcached.

A. Testing Tool

YCSB provides workloads that simulate various KVS use
cases. Table II, quoted from [15], shows the characteristics of
the workloads. Each workload is characterized by the ratio of
commands and the record selection distribution.

Read, update and insert operations in the table correspond
to memcached’s GET, REPLACE and ADD commands respec-
tively. In our experiment, however, we use SET for both update
and insert operations. The difference between SET and update
and insert is that update (REPLACE) and insert (ADD) check
whether or not the data is already stored, and decide to store
the data accordingly. Since we have to access the memory
before we know whether the same key is stored, we used SET
in place of REPLACE and ADD. The delay will be almost the
same because checking whether the data is stored or not can be
done in parallel with other operations. Regarding Workload E,
we do not use it because memcached does not support the scan
operation. Thus we use Workload A to D for our evaluation.

There are two record selection distributions: Zipfian and
Latest. Zipfian is a distribution in which certain records are
popular independent of their insertion order. An intuitive exam-
ple is Wikipedia, where certain entries such as “Moore’s Law”
or “Transistor” are frequently viewed even though they were
created years ago. On the other hand, Latest is a distribution in
which the records added recently are the most popular ones.
An example of Latest selection is Facebook’s user updates
where people mainly view their friend’s recent posts.

B. Simulation Results

Fig. 4 and Fig. 5 show the miss rate for GET requests at the
NIC cache with various associativity and capacity for FIFO and
least recently used (LRU) replacement algorithm respectively.
The x-axis is the relative ratio of the NIC cache capacity to the
memcached capacity running on the host CPU. Memcached’s
capacity was set to 512 MB. This is four times as large as the
NIC cache size that we implemented as described below in
Section V. (The ratio of the cache size to the host memcached
size determines the miss rate, rather than the absolute cache
size.)

Apparently, the difference in miss rates between the two
algorithms is very small. For Workload A to C, the miss rates
are a few percent less with LRU than with FIFO when the
capacity of the NIC cache is small. Workloads A to C, which
use Zipfian distribution, have similar curves, while Workload
D with Latest distribution have linearly decreasing miss rates
as the NIC cache’s capacity increases.

We also carried out an experiment with a read-no-allocate
policy, which means that the NIC does not cache the KVP
on receiving the GET reply from the host CPU. This policy
has the advantage of keeping the data consistency between
the NIC cache and the host CPU easier. If a GET miss for a
certain key occurs at the NIC and the subsequent request is
a SET for the same key, the KVP set by the SET request at
the NIC can be overwritten by the GET reply for the GET
miss from the host CPU. This problem can be avoided in
either of two ways: sending request from the NIC to the host
CPU synchronously, or employing a read-no-allocate policy.
Since synchronous requests can lead to an increase in average

TABLE II.

DESCRIPTION OF YCSB WORKLOADS. (ORIGINALLY SHOWN IN [15].)

Workload Operations Record selection Application example

A-Update heavy Read: 50% Zipfian Session store recording recent actions in a user session
Update: 50%

B—Read heavy Read: 95% Zipfian Photo tagging; add a tag is an update, but most operations
Update: 5% are read tags

C-Read only Read: 100% Zipfian User profile cache, where profiles are constructed elsewhere

(e.g. Hadoop)

D-Read latest Read: 95% Latest User status updates; people want read the latest statuses
Insert: 5%

E-Short ranges Scan: 95% Zipfian/Uniform Threaded conversations, where each scan is for the posts in a
Insert: 5% given thread (assumed to be clustered by thread id)

60

40

Miss rate per type (%)

20

100 100 100
1-way —— 1-way ——
2-way - 2-way —*--
4-way ¥ 4-way ¥
80 80 8-way —& 80 8way B
Full associative -—#-- Full associative --#--

0 0
1/32 1/32

0
12 1132

116 1/8 1/4 12 116 1/8 1/4 116 1/8 1/4 12 116 18 1/4 12
Size ratio of NIC cache to memcached Size ratio of NIC cache to memcached Size ratio of NIC cache to memcached Size ratio of NIC cache to memcached
Workload A Workload B Workload C Workload D
Fig. 4. Miss rate for GET requests with FIFO replacement policy.
100 100 100 100
1-way —+—
2-way
80 80 80 4-way

80
60 T 60T

40 40

Miss rate per type (%)

20 20

8-way
Full associative --

60 60

40

40

20 20

=

0 0
1/32 116 18 1/4 12 1/32

Size ratio of NIC cache to memcached
Workload A

1716 1/8 1/4
Size ratio of NIC cache to memcached
Workload B

Fig. 5. Miss rate for GET requests with LRU replacement policy.
100 . . ‘ .
- Read-no-allocate =z
3 Read-allocate mass
80 B & B
o5 poted
o poted
I
S B 5
< 60t i B 1
° BB
o % &
5
FE & : |
=
20 1
5

1/32 116 1/8 1/4 12
Size ratio of NIC cache to memcached

Fig. 6. Miss rates with read-allocate and read-no-allocate for Workload C.

latency, employing a read-no-allocate policy can be beneficial
if the miss rate at the NIC does not increase.

We found that the miss rate increased by less than a few
percent for Workload A, B and D. For Workload C, however,
the miss rate increased by more than ten percent (Fig. 6). This
degradation comes from the command mix of Workload C.
Unlike Workload A, B and D, Workload C does not send
SET requests, so once a popular key is evicted from the
NIC during the load phase, it cannot store it again in the
transaction phase, and thus the miss rate rises. (YCSB has
load phase, which sends SET requests for all the keys for
warm up, and transaction phase, which sends requests with
the characteristics given in Table II. The results were measured
during the transaction phase.)

0
12 1/32

0
116 1/8 1/4 12 1/32
Size ratio of NIC cache to memcached

Workload C

116 1/8 1/4 1/2
Size ratio of NIC cache to memcached
Workload D

V. HARDWARE DESIGN

Through our simulation, we confirmed that our concept is
effective for various workloads. Although it has a relatively
low hit rate for Workload C, as our initial implementation, we
implemented the system with a read-no-allocate policy for its
simple implementation. Fig. 7 shows the architecture of the
NIC cache. The circuit implemented in the FPGA consists of
five parts as described below:

Incoming packet handler: Non-memcached packets re-
ceived from the network side are sent to the CPU without any
operations so that the CPU could run not only memcached
but also other server applications. On receipt of a memcached
packet, the command, the key and the value are extracted from
the packet and sent to the memory controller, hash calculator
and the hash table. If the command is a GET and the memory
controller returns a miss, the packet is sent to the CPU. If
the memory controller returns a hit for a GET command, the
packet is discarded. If the command is a SET or a DELETE,
the packet is sent to the host CPU regardless of hit or miss
returned from the hash table.

Outgoing packet handler: Outgoing packet handler does
three things. First, it creates a packet in reply to a GET request
using the key and the value given from the memory controller.
Second, it receives memcached or other packets from the host
CPU. Finally, it merges the packets from the two data sources
(memory controller and the host CPU) and sends them out to
the network. As mentioned in the beginning of this section,
in our initial implementation, we do not cache data from the
reply packets so as to simplify our implementation. Improving

—b

Incoming packet handler ’7*>

lcmd lkey lvu\ue

cmd

write

DRAM address

wr_data

rd_data Hash table
fehit |

ikey lva\ue

Outgoing packet handler

Memory
Controller |3

o

Fig. 7. NIC cache architecture.

this behavior is part of our future work.

Hash calculator: Hash calculator receives a key from the
incoming packet handler and calculates a hash with Jenkins’s
lookup3 function [16]. It produces a 32-bit hash from the key.

Hash table: Hash table manages where in the DRAM
memory to store the KVP. More detailed structure is given
in Fig. 8. The top 15 bits of the hash given from the hash
calculator becomes the index of the hash table, and the lower
17 bits are written to the empty entry in the row, pointed to by
the index, as a tag. The table is 8-way associative with a pseudo
LRU replacement algorithm. The address of the memory is
retrieved uniquely from the column and the row where the tag
is stored. The key and the value are stored at the location on
the memory where the address points. Memcached originally
supports variable sizes of keys and values, but since YCSB
supports fixed key and value sizes by default, we use fixed
sizes. According to Facebook’s investigation, key sizes are
mostly less than 50 bytes and value sizes are less than a few
hundred bytes. Therefore, we set the key size and the value size
to 64 bytes and 448 bytes respectively to keep our hardware
implementation of memory addressing simple by setting the
size of the KVP to 512 bytes, which is a power of two.

If the command given from the incoming packet handler is
a SET, the hash table stores the tag in a certain entry, setting
its valid flag. If the command is a GET, the hash value is
looked up in the hash table and hit/miss information is sent
to the memory controller. Both in the case of SET and GET,
the calculated address is sent to the memory controller. For
DELETE, the valid flag of the entry is invalidated if the hash
value stored in the table matches the hash value given from
the hash calculator.

Memory controller: The memory controller receives the
command, the key and the value from the incoming packet han-
dler, and also receives the address and the hit/miss information
from the hash table. If the command is a GET, it sends a read
signal and the address to the memory. Then the two keys from
the incoming packet handler and the memory are compared
to see whether they match. Since identical hash values can be
generated from different key strings, the judgment of hit/miss
at the hash table is uncertain. The keys should be checked here
so as to make sure they are really identical. Provided that the
keys match, the memory controller sends the key and the value
to the outgoing packet handler; otherwise it does nothing. If
the command is a SET, it writes the key and the value to
the memory at the address given from the hash table. If the
command is a DELETE, it does nothing.

FPGA DRAM

key value

validtag valid tag valid tag

index.

!

address < associativity

Fig. 8. Correspondence of the hash table and the value storage.

TABLE III. DESIGN SPECIFICATION OF FPGA

Number of used block RAM and FIFO
Number of used slice LUTSs
Number of used slice registers

238 / 324 (86%)
60314 /207360 (29%))
64505 /207360 (31%)

A. Experimental Conditions

We used UDP protocol for communication between the
YCSB server and the memcached server. The two servers
were connected with the 10 Gbps interconnect. Although
memcached supports both TCP and UDP protocols, to make
the packet offloading simple, we used UDP.

Our proprietary platform board consists of two 10 Gbps
network interfaces, a Virtex-5 LX330T FPGA, a 1 GB DDR2
SDRAM memory and a PCI Express (Genl x8) interface. The
host CPU is Intel Xeon E5-1620. How efficiently we can use
the memory on the NIC depends on how large a hash table
we can implement in the FPGA’s block RAMs. The resource
usage is shown in Table III.

B. Performance

First of all, we confirmed that our system works for all
Workloads A to D. Then we evaluated the latency of our
system in three ways: First, to estimate the network latency, we
implemented a system on the FPGA of the NIC that returns
the request immediately after receiving it from the network.
Next, we implemented the system described in Section V,
sent GET requests for the same key for several times, and
got the minimum latency. Finally, we sent SET requests with
different keys several times and got the minimum latency. All
the requests were sent from the server connected to the FPGA
NIC with a 10 Gbps interconnect. The result is shown in Table
IV. According to this table, we can estimate that the latency
of the NIC cache was 8 ps (17 ps - 9 ps) and the latency of
the host CPU was 242 ps (251 ps - 9 ps)

Based on the minimum latencies and the hit rates, we
estimated the maximum improvement of our system for GET
requests compared to using only the CPU (Fig. 9). The
estimation was done with the following formula.

242ps/(hit_rate x 8us + miss_rate x 242us) (1)

For workload A and B (Zipfian distribution), the latency
improved at a maximum by three to four times. For Workload
D (Latest distribution), the latency improved at a maximum by
about 15 times. Since the system was implemented with a read-
no-allocate policy, the improvement of the latency of Workload
C (Zipfian distribution) was a little less than Workload A and
B.

VI. DISCUSSION AND FUTURE WORK
In order to keep the implementation simple and avoid data
inconsistency between the NIC cache and memcached, we
decided to employ a read-no-allocate policy. As a consequence,
this leads to a decrease in the hit rate for Workload C, which
has only GET requests. However, employing read-allocate will
lead to a drop of NIC cache’s average latency. Finding a

Improvement of latency (a.u.)

Bway —+—

1/32 116 18 1/4 12 ’ 1/32 116 1/8 1/4 12
Size ratio of NIC cache to memcached Size ratio of NIC cache to memcached
Workload A Workload B

Fig. 9. Latency improvement with various associativity and cache capacity.

TABLE IV. LATENCIES OF THE SYSTEM.

Network
Reply from NIC (NIC cache hit)
Reply from host CPU (SET)

9 us
17 ps
251 ps

solution to keep data consistency and high performance at the
same time is one of the largest tasks remaining.

Another limitation in this paper is that YCSB, the bench-
marking tool we used, uses fixed sized keys and values for
evaluation. If the web server sends a SET request to our system
with variable key and value sizes, while we have fixed sized
space to store the KVP as described in this paper, we have to
ignore the request at the NIC and leave it to the CPU to handle.
This will lead to a decrease in the hit rate of GET requests and
thus the performance of the system will degrade. To overcome
this problem, we should employ a method to accept any key
and value sizes with an efficient memory allocation technique.

The low hit rate for requests with Zipfian selection dis-
tribution due to low hit rate at the NIC is also a problem
that we have to deal with. Using least frequently used (LFU)
algorithm for cache replacement may offer a solution. Since
a wider range of keys are requested but the intensively called
keys are very few with Zipfian distribution compared to Latest
distribution, the LFU will prevent the intensively used keys
from being evicted from the cache.

Finally, the relation between the hit rate and the width
of the tag stored in the hash table should be investigated.
If the width of the tag is smaller, the hash table can hold
more entries with the same amount of block memory in the
FPGA. However, in such a case, the chance of a KVP being
overwritten by a different KVP with the same tag will increase
and thus the hit rate will decrease. The balance between larger
entries and the risk of being overwritten should be evaluated.

VII. CONCLUSION

In this paper, we proposed a method to improve the latency
of memcached by caching its data at the NIC and replying
to the client immediately from the NIC when the requested
data is found. The evaluation was done with a common KVS
evaluation tool, YCSB. With the cache parameters determined
through software simulation, the hardware evaluation showed
that our method improves the latency by up to 15-fold for GET
requests for keys with Latest distribution compared to a Xeon.
We will try brushing up our method further by testing other
caching policies, supporting variable key and value sizes, and
other optimizations. We believe that our approach to improve
the performance of the application by caching the data at the
NIC is applicable to other applications as well. We will try
generalizing our method as a new computation architecture.

(1]

(2]

(3]

[4]

(51

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

1/32 116 1/8 1/4 12 1/32 116 1/8 1/4 12
Size ratio of NIC cache to memcached Size ratio of NIC cache to memcached
Workload C Workload D

REFERENCES

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of 21st ACM
Symposium on Operating Systems Principles, 2007, pp. 205-220.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Comput.
Syst., vol. 26, no. 2, pp. 4:1-4:26, 2008.

Y. Xu, E. Frachtenberg, S. Jiang, and M. Palecezny, “Characterizing
facebook’s memcached workload,” IEEE Internet Computing, vol. 99,
pp. 41-49, 2014.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in Proceedings
of the 10th USENIX Symposium on Networked Systems Design and
Implementation, 2013, pp. 385-398.

http://memcached.org/.

W. Lang, J. M. Patel, and S. Shankar, “Wimpy node clusters: What
about non-wimpy workloads?” in Proceedings of the 6th International
Workshop on Data Management on New Hardware, 2010, pp. 47-55.

K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin servers with smart pipes: Designing soc accelerators for mem-
cached,” in Proceedings of the 40th Annual International Symposium
on Computer Architecture, 2013, pp. 36-47.

M. Lavasani, H. Angepat, and D. Chiou, “An fpga-based in-line accel-
erator for memcached,” IEEE Computer Architecture Letters, vol. 99,
pp. 1-4, 2013.

M. Berezecki, E. Frachtenberg, M. Paleczny, and K. Steele, “Many-
core key-value store,” in Proceedings of the 2nd International Green
Computing Conference and Workshops, 2011, pp. 1-8.

S. R. Chalamalasetti, K. Lim, M. Wright, A. AuYoung, P. Ranganathan,
and M. Margala, “An fpga memcached appliance,” in Proceedings of
the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2013, pp. 245-254.

M. Blott, K. Karras, L. Liu, K. Vissers, J. Bir, and Z. Istvan, “Achieving
10gbps line-rate key-value stores with fpgas,” in Proceedings of the 5th
USENIX Workshop on Hot Topics in Cloud Computing, 2013, pp. 1-6.

A. Wiggins and J. Langston, “Enhancing the scalability
of memcached,” http://software.intel.com/en-us/articles/
enhancing- the-scalability- of-memcached-0.

S. Tanaka and C. Kozyrakis, “High performance hardware-accelerated
flash key-value store,” 2014, presented in the Sth Annual Non-Volatile
Memories Workshop.

“Convey computer memcached appliance,” http://www.conveycomputer.
com/files/1813/7998/4963/CONV-13-046_MCD_Datasheet.pdf.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of
the 1st ACM Symposium on Cloud Computing, 2010, pp. 143-154.

B. Jenkins, “Lookup3.c, for hash table lookup,” 2006, http://burtleburtle.
net/bob/c/lookup3.c.

