
Hardware-Oriented Stereo Vision Algorithm based
on 1-D Guided Filtering and its FPGA

Implementation.
Katsuki Ohata∗, Yuki Sanada†, Tetsuro Ogaki∗, Kento Matsuyama†, Takanori Ohira†, Satoshi Chikuda†,

Masaki Igarashi†, Masayuki Ikebe†, Tetsuya Asai†, Masato Motomura† and Tadahiro Kuroda∗
∗Faculty of Science and Technology, Keio University

Hiyoshi 3-14-1, Kouhokuku, Yokohama 223–8522, Japan
†Graduate School of Information Science and Technology, Hokkaido University

Kita 14, Nishi 9, Kita-ku, Sapporo 060–0814, Japan

Abstract—This paper presents a novel hardware-oriented
stereo vision system based on 1-D cost aggregation. Many
researchers have implemented hardware efficient stereo matching
to realize real-time systems. However, such methods require a
large amount of memory. We proposed a system that is based on a
hardware-software hybrid architecture for memory reduction. It
consisted of grayscale 1-D cost aggregation HW and 2-D disparity
refinement SW. The 1-D processing reduced the size of RAM in
our HW to 266 kb with an input image size of 1024×768. We
achieved the average error rate for the Middlebury datasets as
6.24%. The processing time was 56.6 ms for the 1024×768 images
and an average of 8.6 ms for the Middlebury datasets which have
an average size of 400×380. Using the resolution of Middlebury
datasets, our system can perform real-time depth-aided image
processing.

I. INTRODUCTION

Stereo matching is a method to estimate a depth map from
a stereo image pair. The depth map is used to aid various
image processing techniques such as pedestrian detection, 3-D
mapping, and refocusing. To run depth-aided image processing
in real-time, depth estimation must be processed at speeds ex-
ceeding real-time. Therefore, many previous studies concerned
on the processing speed.

Stereo matching is defined as a cost minimization problem.
In general, the algorithm is divided into the four steps; i)
Cost calculation: A cost map is calculated for each disparity
according to the similarities of corresponding pixels in the
stereo image; ii) Cost aggregation: Cost maps are filtered
to suppress noises; iii) Disparity computation: Disparities for
each pixel are selected according to the cost map; iv) Disparity
refinement: Errors in the disparity map are corrected. Depth
is calculated from the disparity using the camera parameter.

The most time-consuming step is cost aggregation. The
aggregation using a boxfilter [1] confuses costs with multiple
objects. Segmentation can handle each object separately [2],
but it also increases the computational cost. Therefore, an
edge-preserving filter is often employed (e.g., [3], [4], [5]).
Most of the successful methods in terms of speed are hardware
efficient. CostFilter [5] was implemented on a GPU and runs
at near real-time speed with high accuracy. In [6], the author

implemented a combination of hardware efficient functions on
CUDA, and achieved near real-time speeds, while remain-
ing second in accuracy. To the best of our knowledge, [9]
presents a state-of-the-art system. With FPGA implementation,
it achieved 199.7 fps with an image size of 1024×768 while
others employed images that are 80% smaller.

However, these methods have a issue with the memory size.
The cost aggregation of [5] requires a memory size that is six
times larger than the image size. Jin’s method [9] requires a
memory size of 7 Mb, and it is based on [6]; therefore, [6]
requires a memory size that is near to that of [9].

In this paper, we propose a hardware-software hybrid system
for stereo matching. This system consists of a 1-D horizontal
processing hardware and a 2-D image-refinement software.
The most time consuming step, cost aggression, is processed
on the 1-D hardware. This is similar to RDP [7], but our
method included cost calculation in 1-D space, thus resulting
in highly hardware efficient method which enables the reduc-
tion of memory size and highly parallel processing. The error
rate increases due to the lack of 2-D information. However,
our system can compensate the error using the 2-D software.

II. PROPOSED METHOD

Our method follows the four steps of stereo matching. As
the core of our system, we employed [5]. The key differences
with [5] are the cost aggregation with the grayscale adaptive
1-D guided filtering, which is highly hardware efficient, and
the refinement specialized to the 1-D disparity map.

A. 1-D Cost Aggregation

The key technique in our cost aggregation is guided filtering.
The equation of the grayscale guided filtering is given below.

A(y, x) =
I(y, x)C(y, x)− I(y, x) C(y, x)

I(y, x)2 − I(y, x) I(y, x) + ε
(1)

B(y, x) = C(y, x)−A(y, x)I(y, x) (2)
C ′(y, x) = A(y, x)I(y, x) +B(y, x) (3)

X(y, x) is the mean of X in the window centered at position
(y, x), and ε is a regularizing parameter. This filter smooths
the input C using the image I , and outputs C ′.

This filtering is repeated for each disparities. Reusing the
denominator of eq. (1) for each repetition reduces the com-
putational cost. The denominator of RGB guided filter is
a covariance matrix which has six values, thus requiring a
memory size that is six times larger than the image size. For
this reason, grayscale guided filtering can greatly reduce the
memory size. Because RGB information is already included
in the initial cost, the loss of accuracy is small. Moreover, the
input of the 1-D method has only a 1-pixel height. Therefore,
the memory size required for reusing the denominator of 1-D
grayscale method is only the size same as the image width.

For optimal performance, the filter size needs to be fixed to
the object size in an image. In our system, since the guided
filter for each line works independently, parameters can be
set individually. By precalculating the optimum parameter for
each line, the performance of aggregation can be improved.

The object size can be estimated from the continuity of
textures. Each line processing can operate with only a single
filter size, so the tendency of continuity is used for parameter
optimization. The calculation of continuity tendency T is given
by an equation similar to the deviation,

T (y) =
∑
x

|Ifrlarge(y, x)− Ifrsmall(y, x)| (4)

Ifr is the grayscale image 1-D boxfiltered with radius r, Both
inputs are filtered to consider textures with repetitive patterns.
The filter size of each line processing is selected using the
tendency and thresholds. In our experiment, two threshold
values th1 and th2 = 2th1, and three rough radius values,
rs, rm = rs + rstep, and rl = rs + 2rstep were determined.

The result of 1-D RGB aggregation and proposed aggre-
gation are compared in Fig. 1. Streak effects were greatly
reduced. The software compensates the remaining noise.

B. Preprocessing for Software Refinement

Before refining the disparity map on software, our hardware
preprocesses the disparity map with error detection and noise
reduction. This step requires only three line buffers for the
hardware implementation. The upper FOR loop of Algorithm
1 shows the preprocessing algorithm.

Fig. 1: Example of the Teddy dataset [8]. Left, right: RGB
1-D process without adaptive radius and grayscale 1-D process
with adaptive radius without 2-D refinement. Right: Ground
truth.

Algorithm 1: Refinement Algorithm
Data: Disparity map D, RGB image I , threshold th
for All (y, x) do

if |D(y, x)−D(y + 1, x)| > 1 then
Label (y, x), (y ± 1, x) as an error

if |D(y − 1, x)−D(y + 1, x)| ≤ 1 then
D(y, x) = D(y − 1, x)

for All (y, x) Labeled as errors do
Rup = five nearest non error points above (y, x)
Iup = mean of I ∈ Rup

dup = max difference of I(y, x) and Iup in RGB
Dup = mode of D ∈ Rup

Cup = count of Dup in D ∈ Rup

if Cup < 3 or dup > th then
Dup = D(y, x) , dup = INT MAX

repeat procedures above using Rdown

(Rdown = five nearest non error points below (y, x))
D(y, x) = Dup or Ddown with lower dup or ddown

Error detection labels errors using a vertical gradient. Be-
cause of 1-D method, vertical connections of disparities can be
found only when the true disparity in a region is successfully
recovered. In other words, errors occur as horizontal streaks
which can be detected by obtaining a vertical gradient.

Noise reduction fixes streak errors isolated from other er-
rors, using vertically adjacent pixels. This correction technique
increases the accuracy of subsequent refinements.

C. 2-D Refinement

2-D refinement software consists of error correction and
median filtering. In error correction, the five nearest non error
pixels above and below the target pixel are used. The mode
disparity of 5-pixel set which have colors closer to that of
target pixel is used for the correction. The precise algorithm
is shown in the lower FOR loop of Algorithm 1.

2-D refinement is completed with a 5×5 median filter for
denoising. Our software is mostly a vertical 1-D process.
However, implementing the algorithm on hardware requires
buffers that have the sizes the same as that of the image.
Therefore, this part was processed on software.

III. FPGA IMPLEMENTATION

The solid blocks of Fig. 2 shows a block diagram of our
architecture. The maximum disparity (≡ 2N) determines the
degree of the parallelism, where the output latency increases
as N increases, while the throughput remains constant. The
system consists of two radius estimators for left and right
sequential images, two line buffers for controlling timings of
the images, 2N+1 − 1 delay registers (Z−1) for generating
binocular disparity, 2N+1 cost calculators, 2N+1 guided filters,
two loser-takes-all circuits to find the minimum costs for left
and right blocks, and an occlusion-check & refinement circuit.

Given input (sequential) left and right images are firstly
sent to each radius estimator and outputs radius values for
subsequent guided filters. The radius values are obtained after

left

image

right

image

guided

filter

line buffer

line buffer

line buffer

line buffer

line buffer

line buffer

line buffer

Z
-1

cost

guided

filter

Z
-1

cost

guided

filter

Z
-1

cost

guided

filter

Z
-1

cost

guided

filter

Z
-1

cost

guided

filter

Z
-1

cost

guided

filter

cost

Z
-1

guided

filter

cost

Z
-1

guided

filter

cost

Z
-1

guided

filter

cost

Z
-1

guided

filter

cost

Z
-1

guided

filter

cost

loser takes all loser takes all

depth

line buffer
occlusion check & refinement

radius estimatorradius estimator

Fig. 2: Block diagram of proposed parallel stereo-matching architecture

ALUT Register Block memory DSP block 9-bit Input Res. & Disparity Output Res. & Disparity FPGA CLK
36,969 35,360 32,451 504 192×144 (24-bit RGB) 192×144(3-bit) 20 MHz

TABLE I: Implementation & Performance Summary

input

(guide)

filter radius

input

(cost)

output

c
a

lc
u

la
ti
o

n

box filter

× box filter

box filter

×

box filter

box filter

box filter

c
a

lc
u

la
ti
o

n

IC

C

A

B

I
2

I I

I
2

IC

C

B

A

Fig. 3: Block diagram of guided filter

reading one line of input images. Therefore, the input image
sequences are delayed by line buffers, as shown in Fig. 2.

After radius estimation, the delayed image sequences reach
at inputs of delay registers (leftmost and rightmost of Z−1

in Fig. 2). Each register gives pixel values shifted from 0
to 2N − 1 pixels in both left and right directions. The cost
estimator accepts both shifted and non-shifted pixel values and
accumulate the cost between them in parallel.

The calculated cost maps are then smoothed by parallel
guided filters. Our 1-D guided filter circuit consists of six box
filters, and associate combinational arithmetic circuits (Fig. 3).
The radius of box filter circuits is variable, and can be set at
three different values (pixels). It should be remarked that in
practical implementation, one may remove two box filters and
one multiplier from the 1-D guided filter, because values of Ī
and Ī2 in Fig. 3 are common over the line.

Among the smoothed cost maps, the minimum values for
left and right views are selected by loser-takes-all circuits, and
the corresponding disparity values are given to an occlusion
check & refinement circuits. The circuit detects occlusion
errors by comparing disparity values among left and right
views, and corrects the errors by using disparity values on

comparator

left

depth

right

depth

depth

scan
X 3 3 3 2 2 2X X X 4 4 4X 6 6

scan
X 3 3 3 2 2 23 3 3 4 4 42 6 6

3 3 3 3 2 2 22 2 2 4 4 42 6 6

(i) left fill pixel

(ii) right fill pixel

(iii) output

reverse

buffer

right

fill pixel

reverse

buffer

left

fill pixel

Fig. 4: Block diagram of occlusion check & refinement circuit

the border of the error region, which requires bidirectional
scanning as shown in Fig. 4 (i, ii and iii); i) error region is
filled by disparity values on the left border; ii) flow direction
of the disparity sequences are inverted, and the resulting error
region is filled by the smallest disparity values among the
filled values in i) and disparity values on the right border;
iii) the flow direction is further inverted. Fig. 4 shows the
block diagram of processing i) to iii), where left and right fill
pixel blocks represent the disparity filling circuits, whereas
the reverse buffers invert the signal flows. Each reverse buffer
consists of one line buffer and one up-down counter only.

IV. EXPERIMENTS AND RESULTS

A. Hardware Experiment

The proposed system was implemented on a commer-
cial FPGA board (Power Medusa MU200-SXII with Al-
tera Startix II and onboard SRAMs). The system was
coded by Verilog HDL, and the RTL model was syn-
thesized by Quartus II. Parameters used are as follows:
{ε, rlarge, rsmall, th1, rs, rstep} = {2, 8, 6, 330, 5, 9}. Due to
the limited number of logic elements, N was set at 3 and the

input image was shrunk to 192×144 pixels. Table I summa-
rizes the implementation and performance. Fig. 5 shows the
disparity results for the Tsukuba datasets from [8], processed
by the FPGA.

Although the precision of the disparity values are degraded
due to the reduction of maximum disparity, the FPGA could
generate rough disparity map. Note that this is certainly due to
the limited number of logic elements, because our RTL results
perfectly matched with numerical results at any maximum
disparity, and RTL results with 3-bit disparity matched the
FPGA results as well. These results indicate that the proposed
architecture is not a nominal, but is synthesizable and op-
erates with acceptable clocks and number/scale of hardware
resources.

To compare our method with [9], we compiled and esti-
mated the method with image size of 1024×768. On compiling
the method, maximum disparity was reduced to 16. We esti-
mated the hardware specification by doubling up the number
and CLK of disparity resolution dependent block. In this way,
32 guided filters work twice and generate 64 filtered cost maps.
In order to double the CLK, buffers to hold the temporary
lowest cost maps and two RGB input images were added.
The dotted boxes of Fig. 2 are the additional buffers and they
have the total size of 130 kb. As a result, the estimated size
of RAM became 266 kb, which is only 3.7% of [9].

B. Software Experiment

We conducted the measurement on an Intel Core i3 2.53GHz
PC using Middlebury benchmarks [8] . The threshold value
was set to 40. The results are shown in Fig. 6 and Table III.
Our method was as accurate as [9]. The average processing
time was 56.6 ms for 1024×768 images, and 8.6 ms for the
Middlebury datasets, which has the average size of 400×380.
If the size of the Middlebury datasets is used, significant
amount of time remains to place a depth-aided application.

V. CONCLUSION

This paper presented a hardware-software hybrid stereo
matching constituted a 1-D hardware and fast software. The

Fig. 5: Experimental results for the Tsukuba dataset [8]. Left,
middle: 192×144, 3-bit FPGA, and numerical disparity result.
Right: 384×288, 4-bit numerical disparity result.

Max. disparity LUTS RAM CLK FPS
[9] 60 122 k 7189 kb 318.3 MHz 199.7
Proposed 16 101 k 89 kb 20.0 MHz 25.4
Estimated 64 202 k 266 kb 40.0 MHz 25.4

TABLE II: Comparison of hardware with image size of
1024×768. Our method was only compiled and estimated.

Fig. 6: Results of Teddy dataset [8]. Left: [5]. Right: Proposed.

Method Tsukuba Venus Teddy Cones Average
ADCensus [6] 1.48 0.25 6.22 7.25 3.97
AdaptingBP [2] 1.37 0.21 7.06 7.92 4.24
CostFilter [5] 1.85 0.39 11.8 8.24 5.55
Fast [9] 1.84 0.48 12.7 9.19 6.13
Proposed 2.81 1.75 10.5 8.90 6.24
RealTimeBP [10] 3.40 1.90 13.2 11.6 7.68
MiniCensus [11] 4.34 1.68 12.6 11.0 8.20
RealTimeDP-Tree [12] 2.51 2.97 13.6 13.8 8.71

TABLE III: Comparison of the error rate of the all regions
and the average of three regions defined in [8].

loss of accuracy caused by the loss of 2-D information was
compensated for by changing the filter radius for each cost
aggregation and by applying a new refinement technique
specialized to 1-D processed disparity maps. Moreover, we
implemented the hardware on an FPGA, and from the re-
sult of implementation, estimated the hardware specification
needed to process a 1024×768 image. The result showed
that proposed system operates with acceptable clocks and
number/scale of hardware resources. If the image size of the
Middlebury datasets was used, our system runs at speeds
exceeding real-time while maintaining a sufficient accuracy.

ACKNOWLEDGMENT

The authors would like to thank Semiconductor Technology
Academic Research Center (STARC), Japan, for funding this
research project.

REFERENCES

[1] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of Dense
Two-Frame Stereo Correspondence Algorithms. IJCV, 2002.

[2] A. Klaus, et al. Segment-based stereo matching using belief propagation
and a self-adapting dissimilarity measure. ICPR, 2007.

[3] Q. Yang. Recursive bilateral filtering. ECCV, 2012.
[4] C. Pham and J. Jeon. Domain transformation-based efficient cost

aggregation for local stereo matching. CSVT, 2013.
[5] C. Rhemann, et al. Fast cost-volume filtering for visual correspondence

and beyond. CVPR, 2011.
[6] X. Mei, et al. On building an accurate stereo matching system on graphics

hardware. ICCV, 2011.
[7] X. Sun, et al. Stereo matching with reliable disparity propagation.

3DIMPVT, 2011.
[8] D. Scharstein and R. Szeliski. http://vision.middlebury.edu/stereo/
[9] M. Jin and T. Maruyama. A fast and high quality stereo matching

algorithm on FPGA. FPL, 2012.
[10] Q. Yang, et al. Real-time global stereo matching using hierarchical

belief propagation. BMVC, 2006.
[11] L. Zhang, et al. Real-time high-definition stereo matching on fpga.

FPGA, 2011.
[12] M. Jin and T. Maruyama. A real-time stereo vision system using a

tree-structured dynamic programming on fpga. FPGA, 2012.

