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Abstract—As the volume of data that web services handle
is becoming larger, many web service providers are utilizing
memcached, an in-memory key-value store to improve their
web server’s performance. While memcached usually runs on
a server with a high performance processor, various hardware
platforms has been evaluated for running memcached in order
to achieve higher performance. Recently, several works that use
FPGAs have successfully achieved higher performance than Xeon.
These works, however, struggles to utilize a large memory with
FPGAs. In this paper, we propose a system that enables us to
overcome this problem and enhances memcached by caching
a part of software memcached’s commands and data to the
network interface card equipped with an FPGA and a DRAM.
Our evaluation showed that the NIC cache has less than 30% of
hit rate for workload with Latest key selection distribution, and
30% to 60% for Zipf distribution workloads.

I. INTRODUCTION
Web service providers that have tremendous amounts of

user and other information are eager to facilitate new tech-
nologies that enable their servers to handle more data traffic.
One such technology employed by many web service providers
is key-value stores (KVSs). Memcached is a kind of KVS
technology that reduces the latency of data retrieval by storing
KV-pairs (KVPs) in distributed servers’ memories instead of
fetching from the hard drives of database servers.

Memcached is used by a number of major web service
providers such as Facebook, Wikipedia and YouTube. Accord-
ing to Facebook’s research on their own memcached work-
loads, they use hundreds of memcached servers [1]. In view
of such extensive use, improving the memcached performance
would have a large impact on web services’ response. In
fact, researchers have investigated the suitability of various
hardware platforms for running memcached, from multiple
low power CPUs [2] to many-core processors [3]. Mean-
while, FPGA-based memcached systems are outperforming
high performance CPUs such as Intel® Xeon® by an order
of magnitude [4], [5], [6], [7].

Although these efforts have improved the performance of
memcached, major challenges remain. One such challenge is
to efficiently manage a large memory size with an FPGA.
Memcached servers usually have a few dozen gigabytes of
memory, and such a memory space is too large for an FPGA
to efficiently manage [8]. Research groups trying to handle
large memory size by utilizing an internal or an external CPU
from the FPGA [5], [6], [7].
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Fig. 1. The basic idea of the proposed method.

In this paper, we propose a method that makes possible a
low latency hardware memcached system with less memory
than others require. Our method caches the subset of data
stored in software memcached running on the host CPU at
the network interface card (NIC) equipped with an FPGA and
a DRAM memory. When the server receives a request from
a client, the NIC tries to retrieve the data within the DRAM
and sends it back if the data is found. If not, the NIC passes
the request to the host CPU and the CPU executes the usual
memcached operation. Since memcached data has locality, the
NIC requires only a fraction of the amount of memory that the
host server has. Furthermore, the commands the NIC cache
does not support can be delegated to the host CPU; therefore
only the frequently used memcached commands have to be
supported on the NIC.

II. PROPOSED METHOD AND RESULTS
The behavior of the NIC is shown in Table I. The most

important thing to note here is that when a request that has
a command other than SET, GET or DELETE comes in, the
corresponding entry in the cache is invalidated. This is to keep
the coherency between the NIC and the host: if we pass the
request without invalidating the entry, there will be different
data in the NIC and the host, and the unmodified data will be

TABLE I. SYSTEM BEHAVIOR FOR VARIOUS COMMANDS.

SET Cache data and pass request to host
GET Send reply to the network if hit; pass request to host if miss

DELETE & other Invalidate data and pass request to host
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Fig. 2. Miss rates for GET requests with LRU replacement policy.
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Fig. 3. Key access characteristic of the workloads.

returned from the NIC for the following GET request for the
same key.

We evaluated the miss rates of our system with a software
simulation. Test workload was generated by Yahoo Cloud
Serving Benchmark (YCSB) [9], which is a widely used KVS
benchmarking tool. Among the five workload scenarios that
YCSB provides, we used Workload A, B, C and D, which
uses only commands that memcached supports. We examined
various cache associativity with LRU eviction algorithm. Fig.
2 shows the miss rate with varying sizes of cached capacity,
from 1/32 to 1/2 of the memcached capacity that runs on the
host computer. The miss rates for Workload A, B and C was
approximately 30% to 60%, while it was less than 30% for
Workload D.

III. WORKLOAD ANALYSIS
The differences of hit rates come from their key selection

distribution. Workload A, B and C follow the Zipf distribu-
tion, which certain data are popular regardless of when they
were recently accessed, and Workload D follows the Latest
distribution, which data that are recently accessed are the
most popular ones. Fig. 3 illustrates the characteristics of
the workloads. The x-axis denotes the keys in the order of
their first appearance, and the y-axis denotes their numbers of
appearance. The shaded area signifies that the keys in the area
were set at the warm-up phase, and appeared for the first time
in the evaluation phase otherwise. The number of appearance
during the warm-up phase was not counted.

According to these figures, the workloads that follow the
Zipf distribution are more skewed than the one which follows
Latest. What is more, Workload D has much more keys than
the others. These two characteristics indicate that Workload D
is more likely to result in higher miss rate, although it has
a lower miss rate. In order to improve the performance for
Zipfian workloads, we need to look into the characteristics of
the workloads in more details.

IV. FUTURE WORK
Our next step is to implement a practical system based

on the method we proposed in this paper. Although many
difficulties are expected such as efficient memory allocation
and scalability issues, the hit rate at the NIC cache remains
a major factor of improving the performance. We think that
the current hit rate for Zipfian workloads is still too low. In
order to improve the hit rate, we will investigate how the
workloads behaves and look for a method to efficiently cache
the frequently accessed key-value pairs. 　　　
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