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Abstract— A compact complementary metal-oxide semiconduc- VDD

tor (CMOS) circuit for depressing synapses is designed for

demonstrating applications of spiking neural networks for Ms
contrast-invariant pattern classification and synchrony detection.

Although the unit circuit consists of only five minimum-sized

transistors, they emulate fundamental properties of depressing

synapses. The results of the operations are evaluated by both

experiments and simulation program with integrated circuit

emphasis (SPICE). lin Vb|¥|

I. INTRODUCTION

Silicon circuits that mimic the nervous systems of insects . b , Couit that s of f . ed
. . R epressing synapse Circul al consists or fve minimums-size
and other animals represent the future of neurocomputlrf Insistors and a parasitic capacitance.
They can perform various neural functions because the mi-
crostructures of a nervous system are replicated on their silicon

chips. A number of neural chips have been developed; e@hich prevents us from large-scale implementation of synaptic
silicon neurons that emulate cortical pyramidal neurons [Iircuits for practical applications. In this paper, we propose
FitzHugh-Nagumo neurons with negative resistive circuits [24, compact CMOS circuit that emulate depressing properties
and artificial neuron circuits based on by-products of cogf dynamic synapses. The circuit consists of five transistors
ventional digital circuits [3], [4], [5]. Since recent functionalwithout capacitors. We also exhibit network circuits imple-
models of spiking neural networks tend to use integrate-anélenting the Bugmann’s model for contrast-invariant pattern
fire neurons (IFNs), neuromorphic engineers have developggssification [8] and Senn’s model for synchrony detection
hardware neural systems with several types of IFN circuits 6], to demonstrate the properties of our synaptic circuit.
investigate the effect of spike timing and synchrony on the
network’s computational properties. Il. ANALOG CMOS QRCUIT FORDEPRESSINGSYNAPSE

In addition to the IFNs, dynamic synapses have also at-A synapse whose conductivity changes based on the firing
tracted the attention of neuromorphic engineers who foctete or spike timing of presynaptic neurons is called a dynamic
mainly on the dynamic implications of the neurons. Sersynapse [11], [12]. The change in weight of dynamic synapses
showed that an easy way to extract coherence informatimncaused by short-term changes in the transmitter discharge
among cortical neurons by projecting spike trains througind regeneration cycle at the terminal of presynapses rather
depressing synapses onto a postsynaptic neuron [6]. Moreotlean by learning on a network level. These synapses pro-
a recent model of the layer IV circuitry, which accounts foduce excitatory postsynaptic potential (EPSP) and inhibitory
several contrast-dependent nonlinearities in cortical respongesstsynaptic potential (IPSP) by integrating the output of the
suggests that synaptic depression contributes to solving firesynaptic neurons. A signal is conducted to a postsynaptic
problem of contrast-invariant orientation tuning [7]. Based omeuron through EPSP and IPSP. When the firing rate of the
this suggestion, Bugmann showed that the strength of a tinpeesynaptic neurons increases so that the sequential changes in
averaged current injected into the soma by using a spike tr&RSP and IPSP can no longer follow the input, the efficiency
is independent of its frequency, which implies that the responsksignal conduction to the postsynaptic neurons drops. Thus,
strength of a target neuron depends only on the numbertbfs synapse behaves as a low-pass filtering device. Because
active inputs [8]. presynaptic neuron output is depressed and conducted to the

Several CMOS circuits that emulate dynamic synapses hau@stsynaptic neurons, such a synapse is called a “depressing
been developed [9], [10]. These circuits employed capasynapse” and a synapse acting inversely is called a “facilitating
tors to obtain temporal properties of the dynamic synapssgjnapse”.
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Fig. 3. Experimental results of depressing synapse circuit; (a) successive

: ) - spike inputs, (b) the degree of synaptic depression, and (c) its outputs.
Fig. 2. IC layout of the depressing synapse circuit (a total area gir85

x 36 pm with a 1.5pm scalable CMOS rule).
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Figure 1 shows our MOS circuit for such a depressing 2 S ©
synapse constructed by a current mirrors(nd Ms) and o 0.8F X
pMOS common-source amplifier ¢vand M;). When there is % \\
no input (;, = 0), voltageV, at junctionA is zero because of L o6l Yo
leak transistor M. Therefore, transistor Mis in an on state. %‘_ ' ‘\\ 0
When there is inputl{, > 0) that increased,, M; enters 7 *
an off state. Therefore, the current is mirrored to outfut 8 04+ \
through transistor W N @
Because there is parasitic capacitangeat junction A4, the © )
) : X e 0.2¢t &
increase inV, has a short-time delay. Therefore,; Mnters = N
. L . o 0.1V o
an on state for a short time, and the circuit outputs pulsive &
current I,,;. When the input current becomes zero again, 0 !
M, discharges the capacitancg, and V. returns to zero. 0.01 0.1 1

Remarkably, the Mirror effect of theMOS common-source spike frequency (kHz)
amplifier, which amplifies the value of additional parasitic
Capacitance between the drain and gate terminal of M:ig._4. Chgnges in amplitude of_the output of depressing synapse circuit
increases this discharging time. against the firing rate of presynaptic neuron.

Now assume that the pulsive current (spike) is given at
a short interval, and that subsequent spikes enter béfore
returns to zero. In this case, the amplitude of the output spikesnditions were VDD = 5 V41,5 = 0.1V, input spike width
decreases whe¥, increases. Because the current of transister 0.1 ms and spike amplitude = /JA. A load resistance of
M, increases monotonically wheVi,;,s increases, the time 100 MQ was connected between the output terminal of the
until V; returns to zero decreases. By adjusting voltégg,, circuit and ground to obtain the output currehf,; as the
it is thus possible to change the time of the depression. NoeltageV,,... Figure 3(a) shows input voltadé, of transistors
that, when Vi, is set at VDD, the circuit behaved as a3 ~ Mj that decreases from 5 V to 3.7 V when the spike
nondepressed synapse becalisds zero and M is always current is given. The first spike was giventat 0. Subsequent

in an on state. spikes were given at = 10, 30, 60 and 120 ms. When the
inputs were given successively in a short time (around O to
IIl. EXPERIMENTAL AND SIMULATION RESULTS 30 ms in Fig. 3(a), the amplitude of the output pulse was

We fabricated a prototype circuit using a B scal- depressed [Fig. 3(c)]. As the interval widenéd,approached
able CMOS rule (MOSIS, vendor: AMIS;-well single-poly zero [Fig. 3(b)], and the amplitude of the output pulse returned
double-metal CMOS process). Figure 2 shows a layout of tHethe initial value.
depressing-synapse circuit. The circuit took up a total area ofFigure 4 shows the change in amplitude of the output spike
35 um x 36 pm. against the input firing rate. The leak voltayg;.s was set

Figure 3 shows time courses of the output of the synapae0.1, 0.2, and 0.3 V. As the spike frequency increases, the
circuit for increasing input-spike intervals. The experimentamplitude of the output pulse decreased. By increaging,
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the cutoff frequency was successfully shifted toward the higher firing rate (kHz)
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In the following subsections, we show applications of the - . their firing rates.

proposed circuit to spiking neural networks for contrast-
invariant pattern classification and synchrony detection. Al-

though these networks are designed to be useful when large & 4 t N

number of depressing synapses are employed, we constructed 2

small-scale circuits to demonstrate only fundamental prop- 8

erties of the hardware neural networks. Since our circuit < 3 | N

occupies an area of 3Bm x 36 um even if we use 1.5:m _02’

CMOS process, its large-scale implementation is remarkably G

easy. f 2 L i

s}

A. Application to the Bugmann's Neural Network for @

Contrast-Invariant Pattern Classification 'g 1L |
Bugmann showed that the strength of a time-averaged E’

current injected into the soma by using a spike train tends o

to be independent of its frequency, which implies that the E= ' : :

response strength of a target neuron depends only on the 0 0.05 0.1 0.15 0.2

number of active inputs [8]. We here demonstrate it by using .

our depressing synapse circuits. firing rate (kHz)

Let us assume a simple circuit, as shown in Fig. 5. The
circuit is designed based on the construction of Bugmamﬁ"
neural network. The right part represents a leaky IFN and
the left part represents its dendrite. The IFN consists of a
membrane capacitance’{(), a diode-connected leak MOS
transistor and a threshold detect®fyf). The IFN accepts spike to the depressing synapse successively in a short period, the
inputs from excitatory neurons through depressing synapsefficiency to increase the EPSP per spikes drops. Even if the
The IFN outputs a spike when its EPSP V4, and resets number of input spikes increases with the increase in firing
the EPSP after the firing. In this setup, average values ratte, the value of EPSP does not change greatly because the
the EPSP increases in proportion to the number of presfficiency per spike is lowered by the synaptic depression.
naptic active neurons. Therefore, it can detect the numberNdimely, the discrimination performance of the network tends
presynaptic active neurons by setting appropriate thredhigld to be independent of firing frequency. To demonstrate this,
corresponding to the number of active neurons. On the othvee construct a network in which four synapse circuits are
hand, the EPSP also increases in proportion to firing rate annected to the IFN circuit. We compared the operation of the
spiking neurons. Therefore, the performance to discriminateuron circuit with nondepressed- and depressed circuit as the
the number of presynaptic active neurons largely deteriorat@smber of active presynaptic neurons increases (Fig. 6). In the
if the firing rate is not constant value. figure, N represents the number of active inputs. In case of the

It is shown that this discrimination performance is improvedondepressed synapdé,{s =5V, and it is labeled as NDS in
by using the depressing synapse [8]. If input spikes are givée figure), average value of the EPSP increased monotonically

. 7. Results for dependence of IFN on the firing rate of presynaptic
urons (4 neurons).
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shown in Fig. 7.

Fig. 9. Responses of EPSP for single burst input (a) via nondepressed (b)
and depressed synapse circuit (c).

as the firing rate of postsynaptic neurons increased. The v € application to the Senn’ | network f h

also increased a&' increased. On the other hand, in case of pplication 1o the Senn's neural network for synchrony
the depressed synapdg,{s = 0.2V, and it is labeled as DS in etection

the same figure), the EPSP increased nonmonotonically as th&enn showed that an easy way to extract coherence informa-
firing rate of postsynaptic neurons increased. Now, we defiign among cortical neurons by projecting spike trains through
the firing threshold of the IFN a¥;, = 1.8 V. The firing depressing synapses onto a postsynaptic neuron [6]. We here
rates when the EPSP exceeded the threshold to the numbefigfponstrate it by using our depressing synapse circuits.
active neurons were plotted in Fig. 7 for both depressed (DS)Let us consider the same IFN as shown in Fig. 5. We here
and nondepressed (NDS) synapse circuits. The result indicZ28¥I0y burst neurons as inputs to the IFN, as in the Senn's
that the dependence of the postsynaptic neuron with depres@éginal work. Duging a burst input, the output current of the

synapses on presynaptic firing rates is smaller than thatdsiPressing synapse circuit rapidly decreases for successive

nondepressed synapses. spikes due to the increase ®f and its slow recovery. But

- . during a nonbursting periody, has time to be 0, and this
This ('jlffe.re.nce becomes more apparent wlz}é.nncregses_ results in a strong EPSP at the onset of the next burst. If we

To confirm it in a large-scale net_work, SPICE S'mUIat'on_Wat,sompare this dynamic response with that for a nondepressed

conducted for the network having 100 synapses. As 'nplégmapse evoking on average the same EPSP, the depressed

pulse with pulse amplitude of 1 nA and pulse width of 1%1apse will have a larger response at the burst onset and a

1S was given. The time constant of postsynaptic neuron w, aller response toward the end of the bursts
set around 2 ms. The threshold was set at the value of t q:igure 9 show the response of the EPEP with bursting inputs

EPSP produced by 70 active neurons with a firing frequena) for a nonde
pressed synapse (b) and depressed synapse
of 5 kHz. The values of threshold;;, were 0.2 V when the uit (c). Amplitudes of bursting spike inputs were set at

. . Cir
depressing synapse was used and 2.0 V when conventi aﬁA for depressing synapses and 600 pA for nondepressed

synapse was used. The result is shown in Fig. 8. The firing ral apses, which evoked on average the same EPSP (50 mV).
when the EPSP exceeded the threshold to the active ne : ’

o result ensures that the EPSP caused by the depressed

for the first time were plotted. synapse circuit has a larger response at the burst onset, as
Let us assume that presynaptic active neurons are arrangechpared with nondepressed synapse circuit.

on 2D rectangular grid and forms some patterns; e.g., “E”, “L” Now we demonstrate that the depressing synapse circuit is
or “-”, and “E” is with 90 active neurons, “L” with 50, and able to detect the synchrony in the burst times. We employ
“-” with 10. Then, suppose that the firing rate of the activewo bursting neurons as the input of the IFN that receive
neurons represents the “contrast” strength of these patterngh# burst inputs through depressed or nondepressed synapses.
there is little dependence on the presynaptic firing rates, thggures 10 and 11 show the results. When the input bursts
neuron can classify these patterns independent of their conti@st not synchronized [Figs. 10(a) and (b)], the peak EPSPs
strength. The result shown in Fig. 8 indicates that in usirgyoked by nondepressed [Figs. 10(c)] and depressed synapses
depressing synapse, correct classification can be achieved[fags. 10(d)] were both around 0.1 V. But, when the input
all patterns. bursts are synchronized [Figs. 11(a) and (b)], the peak EPSP
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Fig. 10. Responses of EPSP for asynchronous burst inputs [(a) and (b)] Gg: 11. Responses of EPSP for asynchronous burst inputs [(a) and (b)] via
nondepressed (c) and depressed synapse circuit (d). nondepressed (c) and depressed synapse circuit (d).

evoked by depressed synapses [Figs. 11(d)] was significaﬁ@tage .of each MOS trfam_sistor was scattered by. Gaussian
larger than the nodepressed synapses [Figs. 11(c)]. Theref&fdSe with standard deviation. To eva.luate the noise tol- _
defining an appropriate threshold,, of the IFN; e.g.,V;, €rance, We_counted _the number of splkes of t_he prgsynaptlc
= 130 mV in the experiments, the IFN with the depressinfgeuron during bursting and non-bursting period (Fig. 13).
synapse circuit can fire when the burst inputs are synchronizé£ally, the postsynaptic neuron must not fire during non-
Next, we simulated the output of 100 neurons by randoByrsting period but must fire dunn_g bursting period, for the
spike trains (Fig. 12a). According to [6], there is experiment&'TlSk of synchrony detection. The dlfferencg between the num-
evidence to assume that before and during the tone, auditBff thus represent the performance of this task. The number

cortical neurons fire in short bursts with bursts of three to fo@ POStsynaptic spikes increased as the increase déring

spikes within 40-50 ms, repeated every 200-250 ms. Durifyrsting period. On the other hand, when> 25 mV, the

the tone, the burst onsets are assumed to be synchroniP@gtSynaptic neuron started firing suddenly. Namely, the per-

within groups of 70 neurons that are randomly assembled anfgymance of synchrony detection did not change significantly

for each burst. In our simulations, the overall firing rate of thgY the increase of as long asr < 25 mV. Remarkably, the
population remains constant, apart from the short onset dfiference ¢ performance of synchrony detection) changed
offset of the tone when most cells burst together because fiimonotonically as the increase @f as shown in Fig. 14.
bursting times of the groups alternate during the ongoing tone
(see Fig. 12b).

Applying a tone stimulus (20-45 ms in Fig. 12), the neurons We designed and fabricated an electronically implemented
respond at the onset and offset. They correlate their bursts odépressing synapse. The circuit was designed by using only
among randomly assembled subgroups during the stimuléige minimum-sized transistors, and did not use any capacitor
Since the mean firing rate is on the background level during themake its temporal property. As the result, the circuit took up
tone (Fig. 12b), a postsynaptic neuron gathering the input spikeotal area of 3%m x 36 xm with a 1.5um scalable CMOS
trains through nondepressed synapses would respond amile (MOSIS, vendor: AMIS, n-well single-poly double-metal
at the stimulus onset and offset. With depressing synaps€84OS process). By using the synapse circuit, we demon-
however, the postsynaptic neuron detects the correlated busstated two functional neural networks performing contrast-
and fires during the tone as well (Figs. 12c and 12d), as shoimaariant pattern classification and synchrony detection. The
in the Senn’s original work. results indicated that the depressing synapse circuit worked

To investigate noise tolerance of Senn’s network with thgell on these networks in actual environment with realistic
proposed circuits, we simulated the 100 neuron network witlonfigurations, and suggested further potential applications
random-scattering devices. In this simulation, the threshdid large-scale spiking neural networks with depressed and

IV. CONCLUSION
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