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Abstract— We propose digital VLSI implementation of 
multiple-value cellular automata for simulating traffic flow.  
Recently, a family of the Burgers cellular automata (BCA) has 
been proposed as multi-lane traffic flow models, which are 
derived from the Burgers’ equation interpreted as a macroscopic 
traffic flow model using the ultra-discrete method.  The family of 
BCA is suitable for digital VLSI implementation because of the 
discreteness and the simple update procedure. For developing 
efficient traffic simulators, we implemented the family of BCA as 
digital VLSI circuits using a scalable CMOS technology.  Using 
computer simulator SPICE, it is shown that these circuits 
operate correctly, and they can be expected to be useful tools to 
analyze and predict the behavior of traffic flow 

I. INTRODUCTION 

     Traffic flow phenomena have recently attracted much 
attention from both engineers and physicists [1]. It shows a 
wide variety of collective behaviors such as pattern formation, 
phase transition and scale invariant fluctuations [2]-[3]. 
Especially, dynamic phase transition between free to 
congested traffic flow, such as traffic jam, is the most 
significant problem from both the applied and theoretical 
points of view. 
 In order to investigate traffic flow phenomena in detail, 
numerous traffic models have been proposed: car-following 
models [4]-[5], coupled-map lattice models [6], particle-
hopping models [7]-[10], gas-kinetic models [11]-[12], and 
fluid-dynamic models [13]-[14]. Such models can be 
classified into three categories: microscopic, macroscopic, 
and mesoscopic ones. Microscopic models are based on the 
interactions between vehicles responsible for traffic flow. 
Macroscopic models are based on the average movement of 
vehicles characterized by the fundamental relationships 
between vehicle speed, flow, and density. Mesoscopic models 
are intermediated.  
 Cellular automata (CA) have been used as microscopic 
particle-hopping models [7]-[10]. A cellular automaton is a 
quite simple dynamical system that consists of elements, 
called cells, in a finite number of states in a discrete space and 
discrete time. The states of cells are updated according to the 
states of neighboring cells in synchrony. Despite the simple 
update procedure, CA shows a wide variety of collective 
behaviors and can simulate complex physical processes.  The 
most fundamental CA model for traffic flow is the rule-184  
CA model, which is one of the elementary CA classified by 

Wolfram [16]. In the model, a road is divided into cells that 
can be empty or occupied by a car, and each car moves 
forward on each time step. Several extended versions of the 
rule-184 CA have been proposed [7]-[10]. For instance, Nagel 
and Schreckenberg proposed a stochastic CA for modeling 
single-lane traffic flow [7]. Fukui and Ishibashi introduced a 
deterministic CA model [8]. These models show a phase 
transition between free to congested traffic flow. However, it 
is difficult to extend these models to multi-lane traffic flow 
models.  
 Recently, a class of multiple-value CA, based on the 
Burgers CA (BCA) has been proposed as multi-lane traffic 
flow models [10]. BCA is derived from the Burgers’ equation 
[15] interpreted as a macroscopic traffic flow model by using 
a new type of discrete method, so-called the ultra-discrete 
method [10]. Thus, BCA inherits macroscopic properties of 
the original equation. It also includes an extended version of 
the rule-184 CA in a special case.  
      Due to the discreteness and the simple update procedure, 
the family of BCA is efficient in computing and hardware 
implementation. Especially, the family of BCA is suitable for 
digital VLSI implementation in terms of the following points: 
(i) All variables are small positive integer, (ii) their update 
procedures are expressed as explicit difference equations by 
using ‘add’ and ‘min’ functions, and (iii) each cell has same 
terms with neighboring ones and this fact supports parallel 
circuit architecture. 

Focusing on such advantages, we implemented two 
versions of BCA as digital VLSI circuits toward developing 
efficient traffic flow simulators. We designed these circuits 
using a scalable CMOS technology. Through computer 
simulations, we show that the circuits operate correctly, and 
they can be expected to be useful tools to analyze and predict 
the collective behaviors of traffic flow  

II. BURGERS CA MODELS FOR TRAFFIC FLOW 

     The family of Burgers CA (BCA) [10] has been derived 
from the Burgers’ equation [15]: 
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which  is  used  for  modeling viscous fluid  flow as well as 
traffic flow [14]. By applying the ultra-discrete method to the 
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Fig. 1. Fundamental diagrams of real traffic flow on the Tomei 
expressway. (a ) Driving lane and (b) acceleration lane  cited from [10]. 

 
Burgers’ equation, we can obtain BCA given by the following 
equation [10]: 
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where Uj

t represents the state of a cell j at a time t , L and M 
the parameters, and min ( ) the minimum function. If it is 
assumed that M > 0, L > 0 and 0 < Uj

t < L for any cell j at a 
certain time t, then 0 < Uj

t < L holds for any j. In this case, (2) 
can be regarded as a multiple-value CA. If we put a restriction 
L < M on (2), it can be rewritten as follows: 
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where it is equivalent to the rule-184 CA, which is extended 
to several traffic CA models, such that L =1.  It can be also 
regarded as an extended version of the rule-184 CA with a 
multiple value set {0,…,L}. Thus, it is natural to consider (2) 
as a microscopic model for multi-lane traffic flow. In the case, 
the road is divided into cells that can be empty or occupied by 
cars, and each car moves forward on each time step. Uj

t 

corresponds the number of cars, L is interpreted as the 
capacity of cars at each cell, i.e., the number of lanes, and M 
is the maximum number of movable cars [10].  
     As a traffic flow model, it is desirable to show same 
behaviors observed in real traffic, such as pattern formation 
and phase transition between free to congested flow. Traffic 
flow is characterized by the traffic flow variables: vehicle 
speed v, density , and flow q. Traffic flow is investigated in 
terms of relationships between these variables in detail. For 
instance, there exists the following relationship: q = v. The 
fundamental diagram that describes these relationships is 
often used to analyze traffic flow. Figure 1 shows typical 
fundamental diagrams, flow-density relationships, obtained 
from empirical data of highway traffic [10].  We can find 
phase transition from free flow at low density to congested 
flow at high density.  
     The fundamental diagram obtained from calculation data 
of the BCA model is as shown in Fig. 2(a). The flow and the 
density are defined as follows [10]: 
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Fig. 2. Fundamental diagrams of two variants of BCA. (a) BCA and  (b) 
multiple-value SlS CA with L=2 and K = 30 [10]. 
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where K represents the total number of cells. Figure 2(a) 
indicates that BCA has a critical point that occurs a simple 
phase transition. 
     Recently, an extended version of BCA for traffic flow 
model that introduces slow-to-start effects has been proposed. 
Its evolution dynamics is given by the following equations 
[10].  

                     U j
t+1

=U j
t

+ S j
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where if L = 1, it becomes equivalent to the slow-to-start 
(SlS)  CA  model  [9],  and  thus  it  can  be  regarded  as  a 
multiple-value SlS CA model [10]. Figure 2(b) shows the 
fundamental diagram obtained from calculation data of the 
multiple-value SlS model, where the flow and the density is 
defined as follows [10]:                                                                           
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     As shown in Fig. 2(b), the multiple-value SlS CA model 
show complex phase transitions as observed in empirical data. 

III. CIRCUIT ARCHITECTURE 

     We implemented two variants of BCA as digital VLSI 
circuits. Due to their discreteness and simple update 
procedure, they are efficient in computing and hardware 
implementation. Especially, these CA models are suitable for 
d 
igital VLSI implementation in terms of the following points: 
(i) All variables are small positive integer, (ii) their update 
procedures are expressed as explicit difference equations by 
using ‘add’ and ‘min’ function, and (iii) each cell has same 
terms with neighboring ones and this fact supports parallel 
circuit architecture.  
     First, we constructed a BCA circuit with adders, minimum 
circuits, and flip-flops. Figure 3 shows the block diagram of 
the BCA circuit.  The 2-bit minimum circuit,  shown in Fig. 4, 
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                                                    Fig. 3.   Block diagram of BCA circuit.                                                                               Fig. 4.  Minimum circuit.  
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                                                                                 Fig. 5.  Block diagram of multiple-value SlS CA circuit. 
 
consists of a selector and a comparator that outputs: 

            F2 = A2 B2 (A2 B2)F1, F1 = A1 B1                          
where F2 =1 if A = (A2, A1) > B = (B2, B1).  Depending on the 
output of the comparator F2, the selector outputs min (A, B).  
In practical, the minimum circuit consists of NOT, NAND, 
and NOR gates. If we consider BCA as a highway traffic 
model, all variables are smaller integer than L < 3 and these 
can be represented as at most 2-bit in binary. As for adders, it 
is need at most 3-bit to represent variables, taking into 
account LSB carry and 2’ complementary in binary for 
subtraction. 
     Then, we constructed a multiple-value SlS CA circuit as 
shown in Fig. 5. For constructing the circuit, we applied the lS 
CA model to the following transformation: 

                                   V j
t

= L U j
t

                                         
and then the evolution equations are rewritten as follows: 
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=V j
t
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t 1 V j 1
t+1

+min(L V j
t 1,V j 1
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     As a result of this simple transformation, one stage of 
adder circuits can be reduced. If we would read outputs from 
the circuit, translation of the outputs should be required. 

IV. SIMULATION AND RESULTS 

     We confirmed the operation of the proposed circuits using 
the circuit simulator SPICE. In the following simulations, we 
assumed a standard scalable CMOS process (TSMC 0.18-um).       
     First, we confirmed the fundamental operation of the BCA 
circuit. We constructed a test circuit that consists of three 
cells with a periodic boundary condition. As test patterns, we 
considered sets of initial inputs and desirable outputs such as 
follows:  
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                             Fig. 6. Time-space diagrams of BCA circuit.                                                Fig. 7. Time-space diagrams of multi-value SlS CA circuit.  
 
where we assumed L=1. We confirmed other sets of initial 
inputs and desirable outputs for L=2, 3.   
     Then, we confirmed the fundamental operation of the 
multiple-value SlS CA circuit under the same conditions as 
the above. For instance, we considered a set of initial inputs 
and desirable outputs as follows:  

             

U j 1
t 1U j

t 1U j+1
t 1U j 1

t U j
tU j+1

t

U j
t+1 =

000000

0
,L,

111111
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where we assumed L=1. We confirmed other sets of initial 
inputs and desirable outputs for L=2, 3.  
      Figures 6 and 7 show typical time-space diagrams of the 
BCA circuit and the multiple-value SlS circuit. In both 
circuits, free flow at low density and congested flow at high 
density are observed.                                                                         

V. CONCLUSIONS 

     We have designed digital VLSI circuits based on the class 
of the Burgers cellular automata (BCA) for simulating traffic 
flow: the BCA model and the multiple-value slow-to-start 
(SlS) CA model [10]. These models are directly related to the 
Burgers’s equation used as macroscopic traffic flow model  
[14]-[15], and thus these models show macroscopic behaviors 
such as pattern formation and phase transition observed in 
real traffic flow [10]. Toward development of efficient traffic 
simulators, we have designed these models as digital VLSI 
circuits by assuming a scalable CMOS technology.   Through 
SPICE simulations, we have confirmed the desired operation 
of these circuits, such as phase transition. The operation speed 
of the circuits are independent of the number of cells, 
therefore they are suitable for a large-scale traffic simulation.  
     In our future work, we are going to implement the BCA 
model and the multiple-value SlS CA model as quantum LSI 
systems based on hexagonal BDD approach [17] for a very 
large-scale simulation of traffic flow. 
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