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Abstract

We propose a CMOS circuit that can be used as an
equivalent of resistors. This circuit uses a differential
pair consisting of diode-connected MOSFETs and
operates as a high-resistance resistor when driven in
the subthreshold region. Its resistance can be controlled
in a range of 1-1000 MQ by adjusting the driving
current for the circuit. The results of the fabrication
and measurement of the circuit are described.
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1. Introduction

In CMOS integrated circuits, resistors are usually
made using doped polysilicon layers. Polysilicon
resistors, however, need a very large area if large
values of resistance are required. For example, for a
100 mega-ohm resistor, we have to tolerate a large area
of 0.2 millimeters square even if we use a 1-kQ/square
high-resistance poly layer and a 0.13-um process
technology. Large resistances are therefore difficult to
implement in integrated circuits.

To solve this problem, we propose a concise circuit
that operates as a high-resistance resistor. This circuit
consists of a subthreshold-operated CMOS differential
pair and can be used as an equivalent of high-resistance
resistors. The following provides the details on this
resistor circuit.

2. CMOS circuit equivalent to resistors

Figure 1 illustrates the principle of our resistor
circuit. The circuit consists of diode-connected
differential pair (M1, M2) driven by tail current /,. The
load currents (denoted by /y/2) are fixed to half of the
tail current. In this circuit, given a voltage AV between
terminals 1 and 2, a current A/ flows into terminal 1
and an equal current A/ flows out of terminal 2. This

Fig. 1 Outline of resistor circuit equivalent of a
resistor with terminals 1 and 2.

current A/ is proportional to AV if the differential pair
is operated in its linear region. The circuit therefore
operates as a resistor with terminals 1 and 2. Its
resistance is given by 4mkT/(qly) if the circuit is
operated in the subthreshold region, where m is the
subthreshold slope factor, £ is the Boltzmann constant,
q is the elementary charge, and 7T is temperature. We
can easily make a 100-MQ resistor with a tail current
of 1 nA.

3. Circuit design and fabrication

Figure 2 shows the entire configuration of our
resistor circuit with a biasing subcircuit. We fabricated
the circuit, using a 0.35-uym 2P-4M CMOS process
technology. The aspect ratios W(um)/L(um) of
MOSFETs used for device fabrication are given in the
figure. The size of the circuit was 105 pm x 110 pm.

In actual circuits, zero-volt currents Al; and A/, (see
Fig. 3), or offset currents, flows through the resistor
because of imbalances between MOSFETs in the
circuit. This offset current consists of two components,
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Fig. 2 Resistor circuit with biasing subcircuit.
Aspect ratio W/L (um) used for device fabrication is
given for each MOSFET.
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Fig. 3 Offset currents of resistor circuit. Offset
currents Al; and A, consist of common-mode offset
current I and differential offset current /.

i.e., (i) common-mode offset current /¢, that flows into
both terminals of the resistor, and (ii) differential offset
current /g that flows from terminal 1 to terminal 2.
That iS, A[l = Id,:f]‘ + [CM and AIZ = Id,ﬁ‘ - ICM~ The
common-mode offset occurs if the currents ratio of M5
to M3-M4 is not 2:1. The differential offset occurs if
currents in M1-M3 and M2-M4 are not equal with each
other. This has influence on the resistance
characteristic as follows.

Figure 4 shows the voltage-current (AV-Al) curve of
the circuit, measured for /, = 1 nA. The characteristic
was almost linear for voltages from -40 to 40 mV. The
offset currents influenced the resistance characteristic:
that is, (a) AV-AI curve did not pass the zero point, and
(b) current A/, (solid line) flowing into terminal 1 was
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Fig. 4 Voltage-current characteristic of resistor
circuit, measured for I, =1 nA, V,;, =3 V, and V¢y
( common-mode voltage for terminals 1 and 2 )
=15V.
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Fig. 5 Offset currents as a function of common-
mode voltage V¢, for terminals 1 and 2, measured
for Iy=1nA and V,;=3V.

not exactly equal to current A/, (dashed line) flowing
out of terminal 2.

Figure 5 shows the common-mode offset current and
the differential one as a function of common-mode
voltage Vcy for terminals 1 and 2, measured for
Iy = 1 nA. In this example, for a V), in a range of
0.4-2.8 V, the offset currents are small, so the circuit
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Fig. 6 Resistance of resistor circuit as a function of
tail current 7. Sold line shows measured data, and
dashed line shows theoretical resistance.
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Fig. 7 CR phase-shift oscillator. The elements
circled by dashed lines represent resistor circuits.

can be used as a resistor.

Figure 6 shows the resistance as a function of tail
current /y. The resistance was inversely proportional to
Iy and, for example, 123 MQ for I, = 1 nA at room
temperature.

4. Application---phase-shift oscillators

As an application, we made a CR phase-shift
oscillator, using a low-pass filter consisting of our
resistor circuits and capacitors. Figure 7 depicts the
configuration, and Figure 8 shows the chip photograph.
The oscillation frequency was theoretically given by
f = /6 /(2nCR), where R is resistance and C is
capacitance in the low-pass filter. Figure 9 shows
measured waveforms of oscillation output. The
frequency was 290 Hz for C = 10 pF and [, = 1 nA,

350 ym

370 um

Fig. 8 Chip photograph of phase-shift oscillator.
Chip size is 350 pm x 370 pm. Parameters used for
fabrication were R;, = 5 kQ, R,= 170 kQ, C = 10 pF,
Vdd= 3 V, and Eo =1.5V.
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Fig. 9 Output waveforms of phase-shift oscillator,
measured for two values of tail current I, for
resistor circuit.

and 2.7 kHz for C = 10 pF and /,= 10 nA. Our resistor
circuit can provide high resistance easily, so we can
build sine-wave oscillators for very low frequency
applications.
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5. Temperature compensation

The resistance of our circuit is 4mkT/(gly) and is
proportional to temperature if tail current /; is constant.
To cancel this temperature dependence, we designed
an improved circuit that used a PTAT current
(Proportional To Absolute Temperature current) as the
tail current.

Figure 10 shows this circuit. A PTAT current source
forms a B multiplier self bias circuit consisting of
current mirrors (M6-M9 and other four transistors) and
a switched-capacitor resistor (C; and CK, CK ). The
PTAT current Ipryr is given by mkTC, fInK/q if the
MOSFETs are operated in the subthreshold region,
where f'is the switching frequency and K is the aspect
ratio of M6 to M7. In this circuit, we set aspect ratio of
M9/M10 to o : 1, so the tail current of the circuit was
Ipryr/a. Therefore, theoretical resistance between
terminals 1 and 2 is 40/(C,fInK) and independent of
temperature.

We simulated the temperature dependence, using a
set of 0.35um-CMOS device parameters. Figure 11
shows the temperature characteristic of the PTAT
currents Ipryr with the switching frequency as a
parameter. The current changes linearly with
temperature. Figure 12 shows the temperature
dependence of the resistance. The temperature
coefficient (TC) was 260-600 ppm/°C (solid lines) for
resistances from 20 to 140 MQ. In contrast, as shown
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Fig. 11 Temperature -characteristic of PTAT
current source for three switching frequencies.
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Fig. 12 Temperature characteristic of resistor
circuit with compensation. Parameters used for
fabrication were V;; = 3V, a =10, K = 2,
C;=0.55 pF.

by dashed lines, TC was 2610-2660 ppm/°C without
temperature compensation (i.e., tail current is constant).
Thus, we were able to obtain high-resistance resistors
with a small temperature coefficient.
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