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Abstract

A simple single-electron circuit on a single-layer nanodot ar-
ray for depressing synapses is proposed. The circuit can be
used as a unit element on spiking neural networks and its ap-
plications. Although our synapse circuit consists of only three
single-electron oscillators, they emulate fundamental proper-
ties of depressing synapses. We verify operations of our de-
pressing synapse circuits by using computer simulation. Fur-
thermore, we demonstrate collective operations of the circuits
in contrast-invariant pattern classification and synchrony de-
tection.

1. Introduction

Synaptic depression, network dynamics and their applica-
tions have attracted recently the attention of many modelers
who mainly focused on the dynamic implications of neural
systems. Abbott et al., for example, reported a striking fea-
ture of synaptic transmission between neurons where post-
synaptic firing rates for input spike trains are limited upto
some value because of short-term synaptic depression [1]. On
the other hand, interesting applications on various neural net-
works with depressing synapses have been proposed [2], [3],
[4], and several hardware synapses on neuromorphic CMOS
devices have been fabricated [5], [6]. Such neuromorphic de-
vices will act as novel information processing devices in the
future. In this report, we design a single-electron depress-
ing synapse (SEDS) that is contrived to be constructed on a
single-layer nanodot array, and show that device implementa-
tion of the SEDSs on such nanodot array is much easier than
that of depressing synapses on CMOS VLSIs.

2. Single-electron depressing synapse circuit

To design a depressing synapse circuit, we use a pair of
single-electron oscillators (Fig. 1 (a)) that has been proposed
for an excitable media [7] and a spiking neuron circuit [8].
The oscillator consists of a tunneling junction (Cj), a conduc-
tive device (g), and a bias voltage source (Vdd). The oscilla-
tor has an island node ni where excess electrons are stored.
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Figure 1: Single-electron oscillator and phase diagram.
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Figure 2: Depressing synapse circuit with single-electron os-
cillator.

Figure 1 (b) is a nominal phase diagram of this circuit for
positive Vdd. The vertical and horizontal axes represent node
voltage ni and a tunneling phenomenon [= 1 (when an elec-
tron tunnels), 0 (else)] at Cj. Note that trajectories between
the tunneling phenomenon (0 and 1) in the figure do not have
any quantitative physical meaning but have been used only
to explain this circuit’s operation. We have assumed that
Vdd < e/2Cj (≡ VT: tunneling threshold voltage of junc-
tion Cj). Since tunneling junction Cj is charged by Vdd [(i)
in Fig. 1 (b)], the circuit is stable when ni = Vdd. Under
this resting condition, if ni is further increased by an external
input and exceeds VT, an electron tunnels from the ground to
node i through junction Cj, which results in the sudden de-
crease of ni from VT to −VT [(ii) in Fig. 1 (b)]. Then Vdd

starts charging Cj and the circuit become stable again [(i) in
Fig. 1 (b)]. Note that there is a time lag from when the junc-
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Figure 3: Changes in postsynaptic firing rate of depressing
synapse circuit against interspike interval of input spikes.

tion voltage exceeds VT to when tunneling actually occurs.
We utilized this “monostable” (excitable) oscillatory property
to produce depressing characteristics of synapses; i.e., we re-
gard an array of oscillators as a depressing synapse because
input spike trains are depressed by each neuron operating in
its refractory period. Therefore, we can use an array of single-
electron oscillators to construct the SEDS (Fig. 2). It should
be noted that the term of the refractory period increases as
values of gNa and gK increase [7].

There exists a neuromorphic relationship between the pro-
posed SEDS and electronic Hodgkin-Huxley (H-H) models:
i) a tunneling junction (Cj) corresponds to a membrane capac-
itance and voltage-controlled gates in H-H models, ii) nonlin-
ear chemical reactions between Na+ and K+ can be mediated
by a coupling capacitance (C) because of the neuron’s dielec-
tric inside the soma.

3. Results

We examined depressing properties of a single SEDS by
numerical simulations. We used typical parameter values
for the single-electron circuit [7], except for gNa(= gK) =
5 µS, 2.5 µS and 1 µS. Figure 3 shows synaptic conductivi-
ties (∼ the number of postsynaptic spikes) for interspike in-
tervals (ISI) of input spike trains. As the ISI increases, the
conductivity increases because each SEDS can easily be re-
covered from its depressed (refractory) period as the ISI in-
creases. Because the depressed period increases as gNa and
gK increase, the SEDS’s conductivity for increasing ISIs de-
creases significantly.

In the following subsections, we consider two applications
of our synapse circuit. Section 3.1 describes an application to
the Bugmann’s neural network for contrast-invariant pattern
classification [2]. Section 3.2 describes an application to the
Senn’s neural network for synchrony detection [3].
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Figure 4: Circuit configuration of depressing synapses with
leaky IFN circuit.

3.1. Application to the Bugmann’s Neural Network

Bugmann showed that the strength of a time-averaged cur-
rent injected into the soma by using a spike train tends to be
independent of its frequency, which implies that the response
strength of a target neuron depends only on the number of
active inputs [2]. We here demonstrate it by using our de-
pressing synapse circuits.

Let us assume a simple circuit, as shown in Fig. 4. The cir-
cuit is designed based on the construction of the Bugmann’s
neural network. The right part represents a leaky integrate-
and-fire neuron (IFN) and the left part represents its dendrite
with our synapse circuits. The IFN consists of a membrane
capacitance (CIFN) and a leak conductance (gIFN) with a bias
voltage source (VIFN). In this paper, a threshold (Vth) detec-
tor is omitted from our IFN circuit; i.e., our IFN circuit never
fires. The IFN accepts spike inputs from excitatory neurons
through depressing syanapses. If the IFN circuit has a firing
function, it outputs a spike when its EPSP > Vth, and re-
sets the EPSP after the firing. In this setup, average values
of the EPSP increases in proportion to the number of presy-
naptic active neurons. Therefore, it can detect the number
of presynaptic active neurons by setting appropriate thresh-
old Vth corresponding to the number of active neurons. On
the other hand, the EPSP also increases in proportion to fir-
ing rate of spiking neurons. Therefore, the performance to
discriminate the number of presynaptic active neuron largely
deteriorates if the firing rate is not constant value.

It is shown that this discrimination performance is im-
proved by using the depressing synapse [2]. If input spikes
are given to the depressing synapse successively in a short
period, the efficiency to increase the EPSP per spikes drops.
Even if the number of input spikes increases with the increase
in firing rate, the value of EPSP does not change greatly be-
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Figure 5: Changes in EPSP of IFN against the number of
active presynaptic neuron and their firing rates.

cause the efficiency per spike is lowered by the synaptic de-
pression. Namely, the discrimination performance of the net-
work tends to be independent of firing frequency. To demon-
strate this, we construct a network in which four synapse cir-
cuits are connected to the IFN circuit. We compared the oper-
ation of the neuron circuit with nondepressed- and depressed
circuit as the number of active presynaptic neurons increases
(Fig. 5). In the figure, N represents the number of active in-
puts. In case of the nondepressed synapse (gNa = gK = 5 µS,
and it is labeled as NDS in the figure), averaged value of the
EPSP increased monotonically as the firing rate of postsy-
naptic neurons increased. The value also increased as N in-
creased. On the other hand, in case of the depressed synapse
(gNa = gK = 1 µS, and it is labeled as DS in the same fig-
ure), the EPSP increased nonmonotonically as the firing rate
of postsynaptic neurons increased. Now, we define the fir-
ing threshold of the IFN as Vth = 0.48 mV. The firing rates
when the EPSP exceeded the threshold to the number of ac-
tive neurons were plotted in Fig. 6 for both depressed (DS)
and nondepressed (NDS) synapse circuits. The result indi-
cates that the dependence of the postsynaptic neuron with de-
pressed synapses on presynaptic firing rates is smaller than of
nondepressed synapses.

3.2. Application to the Senn’s neural network

Senn showed that an easy way to extract coherence in-
formation among cortical neurons by projecting spike trains
through depressing synapses onto a postsynaptic neuron [3].
We here demonstrate it by using our synapse circuits.

Let us consider the same IFN as shown in Fig. 4. We here
employ burst neurons as inputs to the IFN, as in the Senn’s
original work. During a burst input, the output current of the
depressing synapse circuit that flows via a conductance (g′)
rapidly decreases for successive spikes due to the refractory
properties of the single-electron oscillator. But during a non-
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Figure 6: Results for dependence of IFN on the firing rate of
presynaptic neurons (4 neurons).
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Figure 7: Responses of EPSP for single burst input (a) via
nondepressed (b) and depressed synapse circuit (c).

bursting period, the oscillator has time to be a state of a rest-
ing period, and this results in a strong EPSP at the onset of the
next burst. If we compare this dynamic response with that for
a nondepressed synapse evoking on average the same EPSP,
the depressed synapse will have a larger response at the burst
onset and smaller response toward the end of the burst.

Figure 7 show the response of the EPSP with bursting
inputs (a) for a nondepressed synapse (b) and depressed
synapse circuit (c). The result ensures that the EPSP caused
by the depressed synapse circuit has a larger response at the
burst onset, as compared with nondepressed synapse circuit.

Now we demonstrate that the depressing synapse circuit
is able to detect the synchrony in the burst times. We em-
ploy two bursting neurons as the input of the IFN that receive
the burst inputs through depressed or nondepressed synapses.
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Figure 8: Responses of EPSP for asynchronous burst input
[(a) and (b)] via nondepressed (c) and depressed synapse cir-
cuit (d).

Figure 8 and 9 show the results. When the input bursts are
not synchronized [Fig. 8 (a) and (b)], the peak EPSPs evoked
by nondepressed [Fig. 8 (c)] and depressed synapses [Fig. 8
(d)] were both around 1 mV. But, when the input bursts are
synchronized [Fig. 9 (a) and (b)], the peak EPSPs evoked by
depressed synapses [Fig. 9 (d)] was significantly larger than
the nondepressed synapses [Fig. 9 (c)]. Therefore, defining
an appropriate threshold Vth of the IFN; e.g., Vth = 2.5 mV in
the experiments, the IFN with the depressing synapse circuit
can fire when the burst inputs are synchronized.

4. Conclusions

We proposed an electrical depressing synapse with a
single-electron circuit. The circuit was designed by us-
ing only three single-electron oscillators. By using the
synapse circuit, we demonstrated two functional neural net-
works. Conventional computing with single-electron devices
are generally based on binary logic decision. Such devices,
however, bring us up some issues of device failure or ther-
mal noise. In contrast, by mimicking computing structure of
noise- and fault-tolerant neural networks on single-electron
circuit, we may obtain possible solutions to the device issues
in conventional single-electron computing.
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Figure 9: Responses of EPSP for synchronous burst input [(a)
and (b)] via nondepressed (c) and depressed synapse circuit
(d).
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