A Novel Segmentation Model for Neuromorphic CMOS Circuits
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Abstract neuron unit

able for analog circuit implementation. The model consists of |
excitable neural oscillators and adaptive synapses where the;
learning is governed by a symmetric spike-timing dependent !
plasticity (STDP). We numerically demonstrate basic opera-
tions the proposed model, as well as fundamental circuit op-
erations using a simulation program with integrated circuit
emphasis (SPICE).

We designed a simple neural segmentation model that is suit-

Figure 1: Network construction of segmentation model.

1. Introduction

Humans can distinguish multiple sensory sources that @o- The model and basic operations

iqcide. Recent_discoveries of synphronous oscilllations ?n theFigure 1 illustrates our segmentation model. The network
visual and auditory cortex have triggered much interest in ;s\ neyral oscillators consisting of the Wilson-Cowan type
ploring oscnla.tory correlation to solve the problems of neWctivator and inhibitor pairsu; andv;) [5]. All the oscilla-

ral segmentation. Many neural models that perform segmgsfls are coupled with each other through resistive synaptic

tation have been proposed, e.g., [1, 2, 3], but they are fnnections, as illustrated in the figure. The dynamics are
ten difficult to be implemented on practical integrated Cigefined by

cuits. In this paper, we propose a simple neural segmentation

model that is suitable for analog complementary metal-oxide- 74, = —u; + fg, (u; — v;) + Z Witug, (1)
semiconductor (CMOS) circuits. i
Our segmentation model consists of mutually-coupled neu- — v
ral oscillators exhibiting synchronous (or asynchronous) os- U= vt fay(ui = 0i) + g Wij u, 2)
JF

cillations. All the neurons are coupled with each other
through positive or negative synaptic connections. Each netherer represents the time constaf,the external input to

ron accepts external inputs, e.g., sound inputs in the fteei-th oscillator,fs, (x) = [1+tanh(8;z)]/2, W;* the con-
quency domain, and oscillates (or does not oscillate) wheection strength between tixh and;j-th activators andV’;;¥

the input amplitude is higher (or lower) than a given threshdlde strength between thieth activator and thg-th inhibitor.
value. Our basic idea is to strengthen (or weaken) the synApeording to the stability analysis in [5], theth oscillator

tic weights between synchronous (or asynchronous) neurand)ibits excitable behaviors wheéh < ©, and exhibits os-
which may result in phase-domain segmentation. The synaflatory ones wher; > ©, if Wi and W3 for all ¢ and j

tic weights are updated based on symmetric spike-timing aeere zero.

pendent plasticity (STDP) using Reichardt’s correlation neu-Suppose that neurons are oscillatiig® © for all 7) with

ral network [4] that is suitable for analog CMOS implemertdifferent initial phases. The easiest way to segment these neu-
tation. In the following sections, we introduce our segmersns is to connect the activators belonging to the same (or
tation model, and demonstrate the operations through nunttiferent) group with positive (or negative) synaptic weights.
ical simulations. Then we present unit CMOS circuits fdn practical hardware, however, the corresponding neuron de-
our model, and demonstrate the operations using a simulati@es have to be connected by special devices having both
program with integrated circuit emphasis (SPICE). positive and negative resistive properties, which prevents us
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from designing practical analog circuits. Therefore, we sirh -1
ply employ positive synaptic weights between activators ah 3 U-av
inhibitors, and do not use negative weights. When the weight—__/ N
between the-th andj-th activators V") is positive and _ . o
WEY is zero, the-th and;j-th activators will be synchronized. Figure 3: STDP learning circuitry.

Contrarily, when the weight between thh activator and the

J-thiinhibitor (W;5") is positive andV;;" is zero, the-th and

j-th activators will exhibit asynchronous oscillation becaugfe curves). Introducing two unit pairs with differes,

the j-th inhibitor (synchronous to theth activator) inhibits j e 4, andd, (> d,), one can obtain those two impulse re-

the j-th activator. sponsesl{ andV’) simultaneously. The weighted subtraction
The synaptic weightsi{;;" andW;3") are updated based7 — ) produces well-known Mexican hut characteristics,

on our assumption; one neural segment is representedaB¥%hown in Fig. 2(d). We use this symmetric characteristic

synchronous neurons, and is asynchronous to neurons infig¢he weight updating as a spike-timing dependent plasticity

other segment. In other words, neurons should be Correla(tgthp) in the oscillator network.

(or anti-correlated) if they received synchronous (or asyn-Figure 3 shows a schematic of our learning circuitry. The

chronous) inputs. These correlation values can easily be gl unit pairs are located between two activatersandus.

culated by using Reichardt's correlation neural network [#he weighted subtractiod(— V') is performed by interneu-

that is suitable for analog circuit implementation [6] The b%n W. According to our assumptions above for neural seg-

sic unit is illustrated by thick lines and circles in Fig. 2(a). entation, whe/ — oV is positive, the weight between ac-

consists of a delay neuron (D) and a correlator (C). A del@yatorsu, andus, (illustrated by a horizontal resistor symbol

neuron produces blurred (delayed) outpl,: from spikes jn Fig. 3) is increased because they should be correlated. On

produced by activatar;. The dynamics is given by the other hand, wheli — oV is negative, the weight between
. activatoru; and inhibitorvy (illustrated by a slant resistor
d - Dous = —Dous + u1, ©) symbol in Fig. 3) is increased because activatorandus

_ should be anti-correlated. To this end, the output of interneu-
where d represeqts the time constant_. The correlator aBn v is given to two additional interneurong,(, and f...).
ceptsDout and splkeshproduced by Iactlvat@’, and ,ﬁUtpUtS Figures 3(a) and (b) shows the input-output characteristics of
Cout = Dous x uz. The conceptual operation is illustrateghese interneurons. Namelf,. (or f..) is linearly increased
in Fig. 2(b). Note thalo,, qualitatively represents correy,an nositive (or negativé) — oV’ is increased, but is zero

lation values b_etween actlvator§ and U2 be_causeﬁout 'S" whenU — aV is negative (or positive). Those positive out-
decreased (or increased) wh&n, inter-spike intervals of the puts (f... and f.,) are given to weight circuit to modify the

activators, is mcreased (or decreased). Slnge this basic Hﬂgitive resistances. The dynamics of the “positive” weight
can calculate correlation vales only for positiX, we em- between activators.
L X3

ploy two basic units, which we call an unit pair, as shown in
Fig. 2(a). The outputl() is thus obtained for both positive Wiuu = —W + fuu, (4)
and negativeAt by summing the twa’,,;s. Through tem- ! !

poral integration of/, we obtain impulse responses of thignd the “positive” weight between activatey and inhibitor
unit pair. The sharpness is increasedias: 0. Figure 2(c) v; is

plots two impulse responses for small and lafgéed and W;;-V = W' + fuv- (5)

andu; is given by
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Figure 4: Numerical simulation results.
Figure 6: Simulation results of neural oscillator.

tor (mg). Whole construction of a neural oscillator includ-
ing additional capacito€’; is illustrated in Fig. 5(b). Figure
5(c) shows a circuit implementing the Reichardt’s basic unit
in Fig. 2(a). For practical purposes, we added two limiters
that convert voltage pulses af; anduy, which vary from

0 to Vgq, into subthreshold current pulses. Bias currént
drives my and ny. Transistor g is thus biased to generate
1, because mand my share the gates. When;ns turned

on (or off) by applyingVaq (or 0) touy, I is copied (or isn’t
copied) to m. Transistors mand my form a current mirror,
whereas m and m, does a pMOS source-common (invert-
ing) amplifier whose gain is increased Bs, — 0. Since
parasitic capacitana@; is significantly amplified by this am-
Figure 5: Unit circuits for neural segmentation; (a) differetyifier, temporal changes af, are blurred on the amplifier’s
tial amplifiers, (b) neural oscillator, and (C) STDP circuit. output (Dout)- Therefore this “de]ayer" acts as a de|a_y neu-
ron in Fig. 2(a). A correlator circuit consists of a pMOS
differential pair (m; and m») and a bias transistor ().
Whenu, = Vyq (Or zero), I, is copied (or isn’t copied) to
m; 3 through m; to myg, as explained above. Therefore, out-
put currentl,; is obtained only wheni, = Vgq. Under
this condition, I, is proportional toD,,; — V},2 for small
fori = 1 ~ 3andi = 4 ~ 6 were increased to 0.5 ©) | Dout — V2| This operation corresponds to that of a correla-

att = 10 s and 20.9 s, respectively. We observed that; ©F In Fig- 2(2).

and us were gradually desynchronized without breaking We carried out circuit simulations of the circuits above.
synchronization amongst neurons in the same group, whidte parameter sets we used for the transistors were obtained
showed that segmentation of neurons based on the input fifam MOSIS AMIS 1.5zm CMOS process. Transistor sizes
ing was successfully achieved. of my, me, mg, my3 and my were fixed at, = 16 pm and

W = 4 upm to construct accurate current mirrors. Sizes of the
resting transistors were set At= 1.6 um andW = 4 pym.

The supply voltage was set at 5 V.

Our Wilson-Cowan based neural oscillators have been im+Figure 6 shows simulation results of a neuron circuit with
plemented in [5]. The oscillator uses standard differential ai; = 10 pF andV,.s = 2 V. Time courses of the activator
plifiers shown in Fig. 5(a) that consists of a differential paimit (u) are plotted. Initially,0 was set at 0.5 V (in relaxing
(+ and -), a current mirror (mand m) and a bias transis-state), and: didn't oscillate. Therg was increased to 2.5V

Limiter2

Correlator

Limiter1 Delayer

We carried out numerical simulations wifi = 6, 7 =
0.1, 81 =5, B2 = 10,d; = 2,dy = 0.1 anda = 1.2. Figure
4 shows time courses of activatars (i = 1 ~ 6). Initially,
the external inputd; (i = 1 ~ 6) were zero € ©), buté;

3. CMOS unit circuits and operations
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Figure 7: Ideal STDP characteristics without limiters.
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Figure 8: Symmetric STDP characteristics with limiters.

att = 0.1 ms, and: exhibited stiff oscillations. Agairg was & novel segmentation method based on a symmetric spike-
setat 0.5V at = 0.3 ms. Sinca: had been excited beforeliming dependent plasticity (STDP). The STDP characteris-
this time, the neuron emitted one spike and then relaxed,i§8 Were produced by combining Reichard's correlation neu-

expected.

ral networks that are suitable for analog CMOS implementa-

Figures 7 and 8 show simulation results of our STDP cifon- The proposed segmentation network was demonstrated
cuits. In Fig. 7, ideal current pulses (amplitude: 100 nA, pu|§épught numerlcal simulations. Basic circuits for construct-
width: 10 ms) instead of limiters were used in Fig. 5(c). P19 Segmentation hardware were proposed and evaluated. We
rameter<’,, V,; andVj, were set at 100 fF, -0.2 V and 3.7 yshowed that our circuit could produce symmetric STDP char-

The value ofVj; was set at the intermediate value of m11

acteristics. Our next target is to setup the whole segmentation

maximum and minimum gate voltage, and this makes the dig™Work with the proposed circuits.

ferential pair's output vary the most. The valuelgf was
chosen so that the delayer makes a reasonable delay. Horizon
tal axes (At) in Figs. 7 and 8 represent time intervals of input
current pulses (spikes). We integrategd; during the simu- [1]
lation and plotted normalized values [(a) in Fig. 7]. Then we
changed the value df, to -2 V. The loweredV},; reduced

the drain current of my and made the delay larger. Againg,
I,y Was integrated and normalized. The result is plotted [(b)
in Fig. 7]. Larger delay made the integratgg; converge to
zero at a largef\t. By subtracting (b) from tripled (a), we
obtained half characteristics of STDP learning (c) in Fig. Bl
In Fig. 8, voltage pulses (amplitude: 5V, pulse width: 10 ms)
were applied ta; andus in Fig. 5(c). Parameteis; andV;,
were set at 5 pF and 3.7 V. The integrafed,s were plotted [4]
in Fig. 8(a) forV4; = 0 and Fig. 8(b) fol,; = —0.04 V. The
result was qualitatively equivalent to the STDP characteristics
shown in Fig. 2(d). [5]

4] W. Reichardt:

4. Conclusion

In this paper, we proposed a simple neural segmenta-
tion model that is suitable for analog CMOS implement?g]
tion. First, instead of employing negative weights require
for anti-correlated oscillation among different segments, we
introduced positive connections between activators and in-
hibitors among different neuron units. Second, we proposed
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