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Abstract

We designed a simple neural segmentation model that is suit-
able for analog circuit implementation. The model consists of
excitable neural oscillators and adaptive synapses where the
learning is governed by a symmetric spike-timing dependent
plasticity (STDP). We numerically demonstrate basic opera-
tions the proposed model, as well as fundamental circuit op-
erations using a simulation program with integrated circuit
emphasis (SPICE).

1. Introduction

Humans can distinguish multiple sensory sources that co-
incide. Recent discoveries of synchronous oscillations in the
visual and auditory cortex have triggered much interest in ex-
ploring oscillatory correlation to solve the problems of neu-
ral segmentation. Many neural models that perform segmen-
tation have been proposed, e.g., [1, 2, 3], but they are of-
ten difficult to be implemented on practical integrated cir-
cuits. In this paper, we propose a simple neural segmentation
model that is suitable for analog complementary metal-oxide-
semiconductor (CMOS) circuits.

Our segmentation model consists of mutually-coupled neu-
ral oscillators exhibiting synchronous (or asynchronous) os-
cillations. All the neurons are coupled with each other
through positive or negative synaptic connections. Each neu-
ron accepts external inputs, e.g., sound inputs in the fre-
quency domain, and oscillates (or does not oscillate) when
the input amplitude is higher (or lower) than a given threshold
value. Our basic idea is to strengthen (or weaken) the synap-
tic weights between synchronous (or asynchronous) neurons,
which may result in phase-domain segmentation. The synap-
tic weights are updated based on symmetric spike-timing de-
pendent plasticity (STDP) using Reichardt’s correlation neu-
ral network [4] that is suitable for analog CMOS implemen-
tation. In the following sections, we introduce our segmen-
tation model, and demonstrate the operations through numer-
ical simulations. Then we present unit CMOS circuits for
our model, and demonstrate the operations using a simulation
program with integrated circuit emphasis (SPICE).
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Figure 1: Network construction of segmentation model.

2. The model and basic operations

Figure 1 illustrates our segmentation model. The network
hasN neural oscillators consisting of the Wilson-Cowan type
activator and inhibitor pairs (ui andvi) [5]. All the oscilla-
tors are coupled with each other through resistive synaptic
connections, as illustrated in the figure. The dynamics are
defined by

τ u̇i = −ui + fβ1(ui − vi) +
∑

j 6=i

W uu
ij uj , (1)

v̇i = −vi + fβ2(ui − θi) +
∑

j 6=i

W uv
ij uj , (2)

whereτ represents the time constant,θi the external input to
thei-th oscillator,fβi

(x) = [1+tanh(βix)]/2, W uu
ij the con-

nection strength between thei-th andj-th activators andW uv
ij

the strength between thei-th activator and thej-th inhibitor.
According to the stability analysis in [5], thei-th oscillator
exhibits excitable behaviors whenθi < Θ, and exhibits os-
cillatory ones whenθi ≥ Θ, if W uu

ij andW uv
ij for all i andj

were zero.
Suppose that neurons are oscillating (θi ≥ Θ for all i) with

different initial phases. The easiest way to segment these neu-
rons is to connect the activators belonging to the same (or
different) group with positive (or negative) synaptic weights.
In practical hardware, however, the corresponding neuron de-
vices have to be connected by special devices having both
positive and negative resistive properties, which prevents us
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Figure 2: Reichardt’s correlation neural network.

from designing practical analog circuits. Therefore, we sim-
ply employ positive synaptic weights between activators and
inhibitors, and do not use negative weights. When the weight
between thei-th andj-th activators (W uu

ij ) is positive and
W uv

ij is zero, thei-th andj-th activators will be synchronized.
Contrarily, when the weight between thei-th activator and the
j-th inhibitor (W uv

ij ) is positive andW uu
ij is zero, thei-th and

j-th activators will exhibit asynchronous oscillation because
the j-th inhibitor (synchronous to thei-th activator) inhibits
thej-th activator.

The synaptic weights (W uu
ij andW uv

ij ) are updated based
on our assumption; one neural segment is represented by
synchronous neurons, and is asynchronous to neurons in the
other segment. In other words, neurons should be correlated
(or anti-correlated) if they received synchronous (or asyn-
chronous) inputs. These correlation values can easily be cal-
culated by using Reichardt’s correlation neural network [4]
that is suitable for analog circuit implementation [6]. The ba-
sic unit is illustrated by thick lines and circles in Fig. 2(a). It
consists of a delay neuron (D) and a correlator (C). A delay
neuron produces blurred (delayed) outputDout from spikes
produced by activatoru1. The dynamics is given by

d · Ḋout = −Dout + u1, (3)

where d represents the time constant. The correlator ac-
ceptsDout and spikes produced by activatoru2, and outputs
Cout = Dout × u2. The conceptual operation is illustrated
in Fig. 2(b). Note thatCout qualitatively represents corre-
lation values between activatorsu1 andu2 becauseCout is
decreased (or increased) when∆t, inter-spike intervals of the
activators, is increased (or decreased). Since this basic unit
can calculate correlation vales only for positive∆t, we em-
ploy two basic units, which we call an unit pair, as shown in
Fig. 2(a). The output (U ) is thus obtained for both positive
and negative∆t by summing the twoCouts. Through tem-
poral integration ofU , we obtain impulse responses of this
unit pair. The sharpness is increased asd → 0. Figure 2(c)
plots two impulse responses for small and larged (red and
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Figure 3: STDP learning circuitry.

blue curves). Introducing two unit pairs with differentds,
i.e.,d1 andd2 (À d1), one can obtain those two impulse re-
sponses (U andV ) simultaneously. The weighted subtraction
(U − αV ) produces well-known Mexican hut characteristics,
as shown in Fig. 2(d). We use this symmetric characteristic
for the weight updating as a spike-timing dependent plasticity
(STDP) in the oscillator network.

Figure 3 shows a schematic of our learning circuitry. The
two unit pairs are located between two activatorsu1 andu2.
The weighted subtraction (U−αV ) is performed by interneu-
ron W . According to our assumptions above for neural seg-
mentation, whenU − αV is positive, the weight between ac-
tivatorsu1 andu2 (illustrated by a horizontal resistor symbol
in Fig. 3) is increased because they should be correlated. On
the other hand, whenU−αV is negative, the weight between
activatoru1 and inhibitorv2 (illustrated by a slant resistor
symbol in Fig. 3) is increased because activatorsu1 andu2

should be anti-correlated. To this end, the output of interneu-
ron W is given to two additional interneurons (fuu andfuv).
Figures 3(a) and (b) shows the input-output characteristics of
these interneurons. Namely,fuu (or fuv) is linearly increased
when positive (or negative)U − αV is increased, but is zero
whenU − αV is negative (or positive). Those positive out-
puts (fuu andfuv) are given to weight circuit to modify the
positive resistances. The dynamics of the “positive” weight
between activatorsui anduj is given by

Ẇ uu
ij = −W uu

ij + fuu, (4)

and the “positive” weight between activatorui and inhibitor
vj is

Ẇ uv
ij = −W uv

ij + fuv. (5)
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Figure 4: Numerical simulation results.
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Figure 5: Unit circuits for neural segmentation; (a) differen-
tial amplifiers, (b) neural oscillator, and (c) STDP circuit.

We carried out numerical simulations withN = 6, τ =
0.1, β1 = 5, β2 = 10, d1 = 2, d2 = 0.1 andα = 1.2. Figure
4 shows time courses of activatorsui (i = 1 ∼ 6). Initially,
the external inputsθi (i = 1 ∼ 6) were zero (< Θ), but θi

for i = 1 ∼ 3 andi = 4 ∼ 6 were increased to 0.5 (> Θ)
at t = 10 s and 20.9 s, respectively. We observed thatu1∼3

and u4∼6 were gradually desynchronized without breaking
synchronization amongst neurons in the same group, which
showed that segmentation of neurons based on the input tim-
ing was successfully achieved.

3. CMOS unit circuits and operations

Our Wilson-Cowan based neural oscillators have been im-
plemented in [5]. The oscillator uses standard differential am-
plifiers shown in Fig. 5(a) that consists of a differential pair
(+ and -), a current mirror (m1 and m2) and a bias transis-
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Figure 6: Simulation results of neural oscillator.

tor (m3). Whole construction of a neural oscillator includ-
ing additional capacitorC1 is illustrated in Fig. 5(b). Figure
5(c) shows a circuit implementing the Reichardt’s basic unit
in Fig. 2(a). For practical purposes, we added two limiters
that convert voltage pulses ofu1 and u2, which vary from
0 to Vdd, into subthreshold current pulses. Bias currentI1

drives m4 and m5. Transistor m6 is thus biased to generate
I1 because m4 and m6 share the gates. When m7 is turned
on (or off) by applyingVdd (or 0) tou1, I1 is copied (or isn’t
copied) to m8. Transistors m8 and m9 form a current mirror,
whereas m9 and m10 does a pMOS source-common (invert-
ing) amplifier whose gain is increased asVb1 → 0. Since
parasitic capacitanceC2 is significantly amplified by this am-
plifier, temporal changes ofu1 are blurred on the amplifier’s
output (Dout). Therefore this “delayer” acts as a delay neu-
ron in Fig. 2(a). A correlator circuit consists of a pMOS
differential pair (m11 and m12) and a bias transistor (m13).
Whenu2 = Vdd (or zero),I2 is copied (or isn’t copied) to
m13 through m15 to m18, as explained above. Therefore, out-
put currentIout is obtained only whenu2 = Vdd. Under
this condition,Iout is proportional toDout − Vb2 for small
|Dout−Vb2|. This operation corresponds to that of a correla-
tor in Fig. 2(a).

We carried out circuit simulations of the circuits above.
The parameter sets we used for the transistors were obtained
from MOSIS AMIS 1.5-µm CMOS process. Transistor sizes
of m1, m2, m3, m13 and m14 were fixed atL = 16 µm and
W = 4 µm to construct accurate current mirrors. Sizes of the
resting transistors were set atL = 1.6 µm andW = 4 µm.
The supply voltage was set at 5 V.

Figure 6 shows simulation results of a neuron circuit with
C1 = 10 pF andVref = 2 V. Time courses of the activator
unit (u) are plotted. Initially,θ was set at 0.5 V (in relaxing
state), andu didn’t oscillate. Thenθ was increased to 2.5 V



0 10 20 30 40

[ms]

(a)

(b)

(c)

2

 I
out
dt 

[a.u. ]

1.5

1

0.5

0

-0.5

-1
5 15 25 35

∆t

Figure 7: Ideal STDP characteristics without limiters.

at t = 0.1 ms, andu exhibited stiff oscillations. Again,θ was
set at 0.5 V att = 0.3 ms. Sinceu had been excited before
this time, the neuron emitted one spike and then relaxed, as
expected.

Figures 7 and 8 show simulation results of our STDP cir-
cuits. In Fig. 7, ideal current pulses (amplitude: 100 nA, pulse
width: 10 ms) instead of limiters were used in Fig. 5(c). Pa-
rametersC2, Vb1 andVb2 were set at 100 fF, -0.2 V and 3.7 V.
The value ofVb2 was set at the intermediate value of m11’s
maximum and minimum gate voltage, and this makes the dif-
ferential pair’s output vary the most. The value ofVb1 was
chosen so that the delayer makes a reasonable delay. Horizon-
tal axes (∆t) in Figs. 7 and 8 represent time intervals of input
current pulses (spikes). We integratedIout during the simu-
lation and plotted normalized values [(a) in Fig. 7]. Then we
changed the value ofVb1 to -2 V. The loweredVb1 reduced
the drain current of m10 and made the delay larger. Again,
Iout was integrated and normalized. The result is plotted [(b)
in Fig. 7]. Larger delay made the integratedIout converge to
zero at a larger∆t. By subtracting (b) from tripled (a), we
obtained half characteristics of STDP learning (c) in Fig. 7.
In Fig. 8, voltage pulses (amplitude: 5 V, pulse width: 10 ms)
were applied tou1 andu2 in Fig. 5(c). ParametersC2 andVb2

were set at 5 pF and 3.7 V. The integratedIouts were plotted
in Fig. 8(a) forVb1 = 0 and Fig. 8(b) forVb1 = −0.04 V. The
result was qualitatively equivalent to the STDP characteristics
shown in Fig. 2(d).

4. Conclusion

In this paper, we proposed a simple neural segmenta-
tion model that is suitable for analog CMOS implementa-
tion. First, instead of employing negative weights required
for anti-correlated oscillation among different segments, we
introduced positive connections between activators and in-
hibitors among different neuron units. Second, we proposed
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Figure 8: Symmetric STDP characteristics with limiters.

a novel segmentation method based on a symmetric spike-
timing dependent plasticity (STDP). The STDP characteris-
tics were produced by combining Reichard’s correlation neu-
ral networks that are suitable for analog CMOS implementa-
tion. The proposed segmentation network was demonstrated
thought numerical simulations. Basic circuits for construct-
ing segmentation hardware were proposed and evaluated. We
showed that our circuit could produce symmetric STDP char-
acteristics. Our next target is to setup the whole segmentation
network with the proposed circuits.
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