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Abstract

A model for the storage of temporal sequences was proposed.
On the basis of this model, we propose a neural model suit-
able for implementation on CMOS circuits that is capable
of learning and recalling temporal sequences. In this paper,
we numerically confirmed basic operations of the model and
demonstrate fundamental circuit operations using a simula-
tion program with integrated circuit emphasis (SPICE).

1. Introduction

Many real-world tasks demand the ability of natural, or ar-
tificial neural systems to process patterns in which the infor-
mation content depends on the temporal order of the input
patterns. In consequence, temporal information processing is
of fundamental importance in various brain functions. The
brain routinely learns and recalls information as the environ-
ment changes over time. This set of temporally ordered pat-
terns is commonly referred to as ”spatio-temporal sequence
learning”. The processing of such sequences is a topic aris-
ing in several fields, such as pattern recognition.

In [1] Fukai proposed a model for the storage of temporal
sequences. Based on this model, we propose a neural model
being suitable for implementation on CMOS circuits that is
capable of learning and recalling temporal sequences. The
model consists of neural oscillators connected to an output
cell through synaptic connections. The basic idea is to learn
input sequences, by superposition of rectangular periodic ac-
tivity (oscillators) with different frequencies.

In the following sections, we explain the operation of the
temporal coding model. Then we present the CMOS circuit
for implementing the model. Finally we demonstrate the op-
eration of the network using a simulation program with inte-
grated circuit emphasis (SPICE).

2. The model

The main purpose of the model [1] is learning and mem-
orizing the input stimuli (I (t)). The temporal coding model
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Figure 1:Temporal coding model.

is shown in Fig1. The model consists ofN neural oscilla-
tors (Qi) with different oscillation frequencies and an output
terminal cellO. One oscillator is composed of a pair of ex-
citatory and inhibitory cells (ui andvi) based on the Wilson-
Cowan model [2], [3]. All the oscillators are connected to
the output cellO through synaptic connections. The input
sequenceI (t) is given to the output cell as a supervisory sig-
nal. The synaptic weights,wi , are strengthened (weakened)
when theQi ’s oscillatory cells overlap (or not) with the input
sequenceI (t), and then, the output cellO to reproduce the
temporal sequences. The weightswi are modified according
to the gradient descent rule (δwi ∼ −∂E/∂wi), whereE is the
mean square errorof the learning given by:

E =
1

2T

∫ T

0
[I (t) − u(t)]2 dt (1)

where u is the membrane potential ofO given by u =∑N
i=1 wiVQi , and thenδwi becomes:

δwi ∼ −
∂E
∂wi
=

1
T

∫ T

0
[I (t) − u(t)]VQi dt (2)

Numerical simulations were conducted to confirm the op-
eration of the model. The simulation results are shown in Fig.
2. The number of neurons was set toN = 200, and the results
were obtained after completing 100 learning cycles. As can
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Figure 2:Model’s simulation results. (N=200).
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Figure 3:Single neuron circuitry.

be seen from the simulations, the time courses of membrane
potentialVu are similar to those of inputI .

3. CMOS circuits and operations

The basic structure of a single neuron of the temporal cod-
ing circuit is shown in Fig.3. There is one oscillator with
input Vd which acts as trigger signal for the oscillator. The
output of the oscillator (VQ) is given to the integrator, which
calculates the weight differenceδw (Eq. 2) by dividing the
integral into two parts. Then, at the end of each learning cy-
cle Vr is ”1”, and the integrator is reseted. The outputs of
the integrator (V1 andV2) are given to the OTA which com-
pares the two signals (V1 − V2) and outputs two currents,Ip

for positive weight differences (V1 − V2 > 0) andIn for nega-
tive weight differences (V1 − V2 < 0). Then, whenVL is ”1”
at the end of each oscillation cycle,T, the outputs (Ip andIn)
are integrated by capacitorsC1 andC2 and thus converted to
voltages (Vp andVn). Finally these voltages are given to the
weight circuit, which compares the two weights (positive and
negative) and gives the output of the modelIu(t).
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Figure 4:a) Neural oscillator circuit.

3.1. Oscillators

The construction of a single neural oscillator [3] is illus-
trated in Fig.4. The oscillator consists of a differential pair
(m3-m4), one current mirror (m1-m2), a bias transistor (m5),
and a buffer circuit composed of two standard inverters (m6-
m7 and m8-m9). The oscillations are controlled by turning
on/off the power supply (Vd). WhenVd is 0 there is no oscil-
lation, and whenVd is ”1”, the circuit starts the oscillations.

3.2. Integrator

The integrator calculates the weight differenceδw (Eq. 2)
by dividing the integral into two parts:

V1 =

∫ T

0
I (t)VQi dt (3)

V2 =

∫ T

0
Iu(t)VQi dt (4)

The integrator circuit is shown in Fig.5. The input current
(I ) is copied to nodeV1 through current mirror (m7-m1), when
transistorm3 is turned on (or off) by applying ”1” (or 0) toVQ

currentI is integrated (or is not) by capacitorC1. The result
(V1) equivalent to the operation performed by Eq. (3). The
same process is carried out for the inputIu and the result (V2)
equivalent to that of Eq. (4). Results of the integration (V1

andV2) are reset at the end of each learning cycle by applying
”1” to Vr .

3.3. OTA

In practical hardware, neuron devices have to be connected
by special devices with both positive and negative resistive
properties. However, implementing negative resistance is dif-
ficult, so we convert the signals into currents and divide the
output into a current for positive weights and a current for
negative weights, as shown in Fig.6 (a).

The OTA subtracts one output given by the integrator from
the other (V1−V2) and separates the results into two currents,
Ip (when V1 − V2 > 0) and In (when V1 − V2 < 0). The
OTA circuit, which consists of a differential pair and current
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Figure 5:a) Integrator circuit.
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Figure 6: a) output characteristic for positive and negative
weights, b) OTA circuit

mirrors, is shown in Fig.6 (b). The currentI1 generated by
V1 is copied toI3 by current mirrorm4 − m10. At the same
time currentI2 generated byV2 is mirrored toI4 by current
mirrorsm6 − m11 andm13 − m12. WhenV1 > V2, currentIp

(Ip = I3− I4) flows and is copied to the output through current
mirror m17−m16. The same process applies to output current
In whenV1 < V2.

3.4. Weight Circuit

At the end of the oscillation cycle, transistorsm1 andm2 in
Fig. 3 are turned on whenVL is ”1”. This updates weightsVp

andVn for positive and negative weights, respectively. These
voltages are given to the weight circuit, which gives the out-
put of the model (VB =

∑
wVQi ) by comparing the positive

and negative weights,Vp andVn. Our weight circuit is shown
in Fig. 7. The circuit consists of a wide-range amplifier with
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Figure 7:Weight circuit.

a small modification. Transistorsm5 andm6 were added be-
tween the differential amplifier (transistorsm2 andm1) and
the current mirrors (transistorsm7 andm9). In this way, the
comparison of the weights (Vp − Vn) will be carried out only
whenVQ is high.

4. Simulation Results

We conducted SPICE simulations of the complete model.
We used TSMC 0.35µm CMOS parameters. The number of
neurons was set to 1. Figure8 (a) shows the simulations of
the oscillator. For the simulations we setW/L = 2 µm /0.24
µm for all transistors.Vre f was set to 450 mV. We observed
from the simulations that att = 0.4 µs Vd is turned on and
the circuit starts the oscillation. Then, att = 0.8 µs Vd is
off. WhenVd is turned on again and the circuit oscillates,
”noticing that the oscillations start with the same phase as that
of the previous oscillatory period is important”. Simulation
results of the integrator are shown in Fig.8 (b). All transistor
sizes were set toW/L = 0.36µm/0.24µm. Input currents for
I andIu were set to 1µA and 2µA, respectively. Capacitances
C1 andC2 were set to 1 pF, and the supply voltageVdd was
set to 2.5 V. WhenVr is equal to ”1” (2.5 V) even ifVQ is ”1”,
V1 andV2 are grounded and remain on 0. Att = 0.25 µs, Vr

is 0 andVQ remains ”1”. At this point currentsI and Iu are
integrated by the capacitors, so voltages atV1 andV2 increase.
At t = 0.5µs,VQ is 0. There is no integration, and voltagesV1

andV2 remain at the same voltages as those of the previous
state. Then,Vr is ”1” at t = 0.75 µs, and voltagesV1 and
V2 are reset to 0 (the capacitors were discharged). Simulation
results for the OTA circuit are shown in Fig.8 (c). Transistor
sizes ofm7 and m10 were set toW/L = 7.2 µm/0.24 µm,
m9 andm12 to W/L = 1.6 µm/0.24 µm, andm14 andm17 to
W/L = 0.72 µm/0.24 µm. The remainder of the transistors
was set toW/L = 0.36 µm/0.24 µm. VoltageV1 varies from
0 to 2.5 V. V2 was set to 1.25 V. Vre f was set to 1 V, and the
supply voltage was set to 2.5 V. WhenV1 was less thanV2,
currentIn is flowing and decreases asV1 increases whileIp
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Figure 8: Simulation results of. a) oscillator, b) integrator,
and c) OTA.

remains 0. WhenV1 = V2 both currents are 0. But asV1

increases to a value greater thanV2, currentIp also increases
while In remains 0 A.

We confirmed the operation of the model by converting the
oscillator voltageVQ into a curentIQ and making the input
current I equal toIQ. Simulation results of the model are
shown in Figs. 9 and 10. For the simulations, we set the
leaning cycle to 1µs. Figure9 (a) shows the corresponding
Vq, Vr andVL for one learning cycle. CapacitancesC1 and
C2 from Fig. 3 were set to 1 pF, and the supply voltage was
set to 2.5 V. The output of the integrator is shown in Fig.9
(b). We can observe thatV1 andV2 are almost the same value
after completing about ten learning cycles. This is because
input Iu almost the same as inputI , and the integrations of
them (Eqs.3 and4) should also be the same. This confirms
the operation of the model. The positive and negative weights
(Vp andVn) increase as currentsIp andIn increase, as shown
in Fig. 9 (c). As observed in Figs.9 (b) and (c) whenV1 >
V2 the positive weight (Vp) increases, while whenV1 < V2

the negative weight (Vn) increases, until both weights reach a
point where none of them increases. The voltage on nodeVA

and voltage at nodeVB (Fig. 5) are shown in Fig.10. We can
observe from the graphic that at the beginning of the learning
VA andVB are different, but after about ten learning cycles the
results are the same.

5. Conclusion

In this paper, we designed a neural circuit for temporal
coding. The network circuit was designed using metal-oxide-
semiconductor (MOS) devices. The model consists of N os-
cillatory units connected to an output cell through synaptic
connections. To facilitate the implementation of the model,
instead of using negative connections required for the imple-
mentation of negative weights, we used current signals and
divide the weights into two currens: one for positive weights
and one for negative weights. We demonstrate the operation
of each component of the network separately using a simu-
lation program with integrated circuit emphasis (SPICE). Fi-

 0  0.2  0.4  0.6  0.8  1

V
r

V
d

V
L

 0

 1

 

2

 0  5  10  15  20

Vp

Vn

 1.2

 1.5

 0  5  10  15  20

 1.3

 1.4

V1

a)

b)

c)

V2

time (μs)

(V
)

time
time (μs)

(V
)

V
p
,V
n

0

0

0

(V
)

2.5

2.5

2.5

(V
)

(V
)

(μs)

V
1
,V
2

Figure 9:Simulation results. a) shows the plot ofVL Vd and
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Figure 10:Input A and outputVu, simulation results.

nally, by making the input current equal to the oscillator cur-
rent, we confirmed operations of the complete model with
one neuron, and we confirmed that after ten leaning cycles
the output and the input have the same phase.
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