
A New Architecture for Feature Extraction to Perform Machine Learning
by using Motion Vectors and its Implementation in an FPGA

Toshiyuki Itou1, Masafumi Mori1, Masayuki Ikebe1, Tetsuya Asai1,
Tadahiro Kuroda2, and Masato Motomura1

1Hokkaido University
Kita 14, Nishi 9, Kita–ku, Sapporo, Hokkaido, Japan

Phone/FAX:+81 11-706-(7147)
E-mail: itou@lalsie.ist.hokudai.ac.jp

2Keio University
3–14–1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan

Abstract

In this study, we propose a machine learning architecture by
using motion vectors that were estimated exploiting high-
speed imaging. The motion vector fields are estimated from
images captured by a high-speed camera and performed fea-
ture extraction, and then normalization and scaling, before
they are utilized as inputs in a neural network called a sim-
ple perceptron. A support vector machine is used for learn-
ing with the same linear classifier as the simple perceptron
and its synaptic weights are then employed by the simple per-
ceptron. The simple perceptron classifies images into two
types, i.e., dangerous (approaching objects) or safe (non-
approaching objects). We describe the architecture based on
machine learning, which uses estimated motion vectors ob-
tained by high-speed imaging. We also present the results
obtained after the implementation of the architecture in an
FPGA.

1. Introduction

Recently, image processors have been developed that can
be installed in portable terminals such as smartphones [1].
The traditional architectures used for complex processing
connect multiple processors or memory components on a
printed circuit board. However, this method leads to a sig-
nificant increase in the size of the board and the data rate
between devices is very slow [2]. Thus, a method was de-
vised that integrates several chips and connects them in three
dimensions [3]. The chip area is reduced using this method
and the data rate is improved between the chips. We expect
that the data rate will be increased considerably in the near fu-
ture, thereby developing a new field of modern semiconduc-
tor applications. For example, we may assume that images
captured by an image sensor at 1000 fps will be transmitted
directly to an image processor. In this case, the inter-frame
differences will become smaller as the video frame rate in-
creases, thereby decreasing the search ranges used for motion

vector estimation by block-matching. Based on this fact, we
proposed an architecture that estimated motion vectors with a
small number of calculations [4]. We used the motion vectors
estimated by the architecture for machine learning.
The motion vector fields were estimated by feature extraction
and used as inputs by a neural network in our proposed ar-
chitecture for machine learning to classify images into two
classes i.e., dangerous (approaching objects) or safe (non-
approaching objects). We used a neural network called a
simple perceptron [5] but it could not solve nonlinear sepa-
rable problems [6]. Therefore, the input data must be made
linearly separable by feature extraction before the data can
be used inputs by the simple perceptron. Thus, in our pro-
posed feature extraction method, the estimated motion vector
fields are divided into several areas and the sums of the vec-
tor sizes are calculated in each direction (nine directions: up,
upper right, right, lower right, down, lower left, left, upper
left, and motionlessness). Furthermore, the summed vector
sizes are calculated for each combination of two vectors (a
total of 28 combinations, e.g., a combination of up and upper
right). This feature extraction method is based on Poggio’s
HMAX model [7][8]. The classification of images became
possible by the feature extraction method [4]. The values cal-
culated by the feature extraction method are normalized and
scaled from –1 to 1, before they are used as inputs by the sim-
ple perceptron. A high capacity for generalization is required
during classification using machine learning. Thus, a support
vector machine [9] is learned in advance with the same linear
classifier as the simple perceptron. After learning, the support
vector machine’s synaptic weights are used by the simple per-
ceptron. We implemented this architecture in an FPGA.

2. Algorithm and architecture for machine learning

2.1 Feature extraction to learn the motion vectors

We use a simple perceptron for machine learning. How-
ever, it cannot solve nonlinear separable problems. Thus, the

- 294 -

2015 RISP International Workshop on Nonlinear Circuits,
Communications and Signal Processing (NCSP'15)
Kuala Lumpur, Malaysia, February 27 - March 2, 2015



LUT

Vx

Vy

SIZE

DIRE

COUNT

+

+

+

ne

e

pipeline_n

pipeline_ne

pipeline_e

n N

NE

E

・
・
・

・
・
・

CLK

5

4

13

13

15 15

15

15 15

15

15

15

15

13

13
7

1

5

(a)

(b) (c)

Figure 1: Block diagram of the architecture used for feature extraction

input data must be made linearly separable by feature extrac-
tion before they can be used as inputs by the simple percep-
tron.
In our proposed feature extraction method, the estimated mo-
tion vector fields are divided into several areas and the sums
of the vector sizes are calculated in each direction (nine direc-
tions: up, upper right, right, lower right, down, lower left, left,
upper left, and motionlessness). Furthermore, the summed
vector sizes are calculated for each combination of two vec-
tors (a total of 28 combinations, e.g., a combination of up
and upper right). Initially, the X component and Y compo-
nent of the first motion vector in a specific area are used as
inputs. The size and direction of the motion vector are cal-
culated from the inputs, and the size is added to the current
summed size of the direction. Similarly, the size is added to
each current summed size for combinations that include the
direction. For example, if the size of the input motion vec-
tor is 0.4 and its direction is up, 0.4 is added to the current
summed size for the up direction. In addition, 0.4 is added
to each summed size for the combinations that include up,
e.g., the combination of up and upper right. The same cal-
culations are performed for all of the motion vectors in the
specific area. Next, the calculated summed vector size for
one direction and combinations of two directions are applied
to all areas. This feature extraction method is based on Pog-
gio’s HMAX model.
Figure 1 shows a block diagram of the feature extraction ar-
chitecture. First, the X and Y components of the estimated
and integrated motion vectors are inserted in a look-up table
(LUT), as shown in Figure 1(a). The LUT transforms the X
and Y components into a vector size (SIZE in Figure 1(a)) and
a direction (DIRE in Figure 1(a)). The SIZE is a 13-bit fixed
point number, where the integer part is 2-bit with a sign bit
and the fractional part is 11-bit. This is because the maximum

size of the motion vectors is 1. It was shown that over 99%
of the simulation results obtained using our machine learning
method based on fixed-point and floating-point were consis-
tent when the fractional part was 11-bit. The registers n, ne,
and e in Figure 1(b) hold the summed vector sizes for up,
upper right, and right, respectively. Registers that hold the
summed sizes for each direction and each combination of two
directions are omitted in Figure 2(b). The SIZE outputted by
the LUT is used as an input by a multiplexer, as shown in
Figure 1(b). The multiplexer connects the SIZE to an adder
in front of the registers, which holds the summed size for a
direction and its combinations, including the direction indi-
cated by the DIRE. The SIZE is added to the current values in
each register. The times when the registers capture the added
values are controlled by COUNT. The registers capture the
added values when an integrated motion vector is input and
its size is added to the current values in the registers. After
all the motion vectors in an area have been added, the val-
ues in the registers are captured by pipeline registers, e.g.,
pipeline n in Figure 1(c). All of the outputs of the pipeline
registers are connected to the normalization architecture.

2.2 Normalization

The summed sizes for each direction and the combinations
of two directions for an area, which are calculated by feature
extraction, are normalized in the range [0, +1]. To normal-
ize the values, the maximum value is determined among the
summed sizes for one direction and the summed sizes are di-
vided by the maximum value. The summed sizes of the com-
binations are normalized in a similar manner.
Figure 2 shows a block diagram of the architecture used for
normalization. The summed size of each direction obtained
by feature extraction is used as an input for a multiplexer, as
shown in Figure 2(a), and the summed sizes for the combina-

- 295 -



N

NE

E

N_NE

N_E

N_SE

COUNT

q0 q8

max

pipeline_single

pipeline_comb

÷

15

15

15

15

13

15

15

15

15

15

NORM_SINGLE

q0 q27

max

÷

15

7

1

15

15

13

13

13

NORM_COMB

・
・
・

・
・
・

CLK

・・・

・・・

(a)

(b)

(c) (e)

(f)(d)

Figure 2: Block diagram of the normalization architecture

tions obtained by feature extraction are also used as inputs by
a multiplexer, as shown in Figure 2(b). Each multiplexer con-
nects the input to a register q0, as shown in Figures 2(c) and
(d). At the same time, the input value and the current value in
the register max (Figures 2(c) and (d)) are compared and the
highest value is captured by the register max. This determines
the maximum value. q0 and q8 in Figure 2(c), and q0 and q27
in Figure 2(d) are registers used for delay until the maximum
value is found. q1 to q7 are omitted from Figure 2(c) and
q1 to q26 are omitted from Figure 2(d). After the maximum
value is found and captured by the register max, a value in
register q8 is divided by the value in the register max (Figure
2(c)). Similarly, the value in register q27 is divided the value
in the register max (Figure 2(d)). Values that have been nor-
malized using this method are entered into pipeline registers,
i.e., pipeline single in Figure 2(e) and pipeline comb in Fig-
ure 2(f). The outputs of each register are then used as inputs
by a scaling architecture.

2.3 Scaling

When a support vector machine is used, it is important that
the input data are scaled [10]. We scale the input data in the
range [-1, +1]. The capacity for generalization is greatly im-
proved by scaling the input data in this range. The input data
only need to be multiplied by 2 and then 1 is subtracted. This
is because the input data have already been normalized to the
range [0, +1].
Figure 3 shows a block diagram of the scaling architecture.
The normalized input data are used as inputs for a bit shift
arithmetic unit (Figures 3(a) and (b)) where they are shifted 1
bit to the left to multiply the input data by 2. The value mul-
tiplied by 2 is then submitted as an input to an adder (Figure
3(a) and (b)). The input in the adder is corrected by subtract-
ing 1 from the value. The scaled value is then submitted as an
input to a multiplexer (Figures 3(c) and (d)). Each multiplexer
is controlled by the COUNT and the input of multiplexer is

+

NORM_SINGLE

-1

<< 1

scl_n

scl_ne

scl_e

scl_n_ne

scl_n_e

scl_n_se

COUNT

CLK

13
14

14

13

+

NORM_COMB

-1

<< 1
13

14

14

7

1

13

13 13

13

13

13

13

13

13

13

13

13

13

・
・
・

・
・
・

SCL_N

SCL_NE

SCL_E

SCL_N_NE

SCL_N_E

SCL_N_SE

(a)

(c) (e)

(d)
(b)

Figure 3: Block diagram of the scaling architecture

connected to a suitable pipeline register (Figure 3(e)) at an
appropriate time. For example, the input of the multiplexer
in Figure 3(c) is connected to a pipeline register called scl n
when the summed size of the up direction has been normal-
ized and scaled. All of the outputs from the pipeline registers
are provided as inputs to the simple perceptron architecture.

2.4 Simple perceptron

A simple perceptron is a type of neural network. The per-
ceptron employed in our method outputs a value based on
multiple input values entered in the input layer. The input
values are multiplied by the synaptic weights and the sum
of these values is calculated. If the sum is a positive value,
the simple perceptron outputs 1; otherwise, the output is 0.
Images are classified into two classes based on the output.
The simple perceptron compare its output with the supervised
data. If the outputs are different, the simple perceptron up-
dates its synaptic weights to learn the difference. However,
the generalization capacity is not improved sufficiently using
this method. Thus, we use a support vector machine with the
same linear classifier as the simple perceptron. This support
vector machine has already learned the data and its synaptic
weights are used by the simple perceptron, which improves
the generalization capacity to an adequate level. In this study,
we used a support vector machine program called LIBLIN-
EAR.
Figure 4 shows the architecture of the simple perceptron. The
multiplexer in Figure 4(a) receives the scaled values and con-
nects the inputs to an output one by one. The output of the
multiplexer is connected to the multiplier (Figure 4(b)). An-
other multiplier input is connected to the output of SRAM,
which stores the synaptic weight values obtained by LIBLIN-
EAR. Thus, the scaling values are multiplied by the synaptic
weights. The output of the multiplier is connected to an adder
and another adder input is connected to a register called sum.
The values multiplied by the synaptic weights are used as in-

- 296 -



Table 1: FPGA implementation summary (10 × 10, 8-bit, Altera Stratix II)
LUT’s Registers Block Memory (byte) Latency (clk) Fmax (MHz)

Motion vector estimation 670 790 780 100 80
Machine Learning 3059 2271 416 61 12

Total 3729 3061 1196

SCL_N

SCL_NE

SCL_E

COUNT

13

13

13

13

13

13 13

13

7

1

1 1
sum

CLK

+

×

WEIGHT

OUT
SUM[12]

・
・
・

・
・
・

(a)

(b)

(c) (d)

Figure 4: Block diagram of the architecture of the simple per-
ceptron

puts for the adder and they are added to the current value in
the register to calculate a sum. If the sum is a positive value,
the simple perceptron output is 1; otherwise, the output is 0.
A signal with an inverted sign bit in the register’s output is
obtained as the output of the architecture, as shown in Figure
4(d).

3. FPGA implementation summary

Table 1 shows a summary of our implementation in an
FPGA of the machine learning architecture and the motion
vector estimation architecture, which we proposed previously
[4]. In this implementation, we assumed that the input images
had a resolution of 10 × 10 pixels and the depth was 8-bit. We
used a commercial FPGA board (MU-200SX II with Altera
Stratix II) for the implementation. The Fmax of the machine
learning architecture was 12 MHz (Table 1). We assumed that
this was due to the divider in the normalization architecture.
An image sensor was used to capture images at a resolution
of 200 × 200 pixels at 1000 fps, and the images were trans-
mitted directly to an image processor. Therefore, the Fmax
must have been more than 32.6 MHz. Thus, the divider must
be improved to increase the Fmax of the machine learning
architecture.

4. Conclusions

We successfully implemented the proposed machine learn-
ing architecture in an FPGA. Therefore, a base of image pro-
cessing LSI chip which we proposed was completed.

Acknowledgment

We would thank the Semiconductor Technology Academic
Research Center (STARC), Japan, for funding this research
project.

References

[1] T. Onoye, ”Recent trends on media processors for em-
bedded systems,” The Journal of The Institute of Image
Information and Television Engineers, Vol. 63, No. 9, pp.
1185–1187, 2009.

[2] R. Sale, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet,
G. Lemieux, P. Pande, C. Grecu, and A. Ivanov, ”System-
on-chip: reuse and integration,” Proc. IEEE, vol. 94, No.
6, pp. 1050–1069, 2006.

[3] P. Garrou, R. Ramm, and C. Bower, ”Handbook of 3D In-
tegration: Technology and Applications of 3D Integrated
Circuits,” 2008.

[4] M. Mori, T. Itou, M. Ikebe, T. Asai, T. Kuroda, and M.
Motomura, ”FPGA-based design for motion vector esti-
mation exploiting high-speed imaging and its application
to motion classification with neural networks,” Journal of
Signal Processing, Vol. 18, No. 4, pp. 165–168, 2014.

[5] F. Rosenblatt, ”The perceptron: a probabilistic model for
information storage and organization in the brain,” Psy-
chol. Rev., 65, pp. 386–408, 1958.

[6] M. L. Minsky and S. A. Papert, ”Perceptrons,” The MIT
Press, 1969.

[7] M. Risenhumber and T. Poggio, ”Hierarchical models of
object recognition in cortex,” Nature Neurosci, 2(11), pp.
1019–1025, 1999.

[8] M. J. Tarr, ”News on views: Pandemonium revisited,”
Nature Neurosci, 2, 932-935, 1999.

[9] V. N. Vapnik, ”The Nature of Statistical Learning The-
ory,” Springer, 1995.

[10] C. Hsu, C. C. Chang and C. J. Lin, ”A practical guide to
support vector classification,” Technical report, 2005.

- 297 -


	1AM1-2-1

