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Abstract— The Belousov-Zhabotinsky (BZ) reac-
tion gives us important clues to reveal the functions
of nonlinear vital phenomena in nature. Because of
the difficulty in computing such reaction-diffusion sys-
tems using conventional digital processors, we here
propose an analog CMOS circuit that emulates the BZ
reaction. A 2-D array of the analog (BZ) circuit is re-
sponsible for fast emulation, and its operation rate is
independent of the system size. The operations of the
proposed circuit were demonstrated by the fabricated
chip and SPICE.

I. I NTRODUCTION

The formation of spatial and temporal patterns in
dissipative and autocatalytic reaction systems have
been spotlighted since almost every natural phe-
nomenon, from traditional convective phenomena to
modern neuro dynamics, can be categorized into these
systems. Although a number of theoretical and nu-
merical studies have been conducted to reveal the
mechanism of those systems, the essential behaviors
are still unknown due to their complexity and require-
ment of massive computational power in the numer-
ical simulations. In this report, aiming at the de-
velopment of high-speed emulators that advance un-
derstanding of such systems, we propose an analog
CMOS circuit that implements a reaction-diffusion
(RD) system [1].

Implementing RD systems in hardware (VLSI) has
several merits. First, hardware RD system is very use-
ful for simulating RD phenomena, even if the phe-
nomena never occurs in nature. This implies that the
hardware system is one possible candidate for devel-
oping an artificial RD system that is superior to natu-
ral system. Second, hardware RD system can operate
much faster than actual RD systems. For instance, the
velocity of chemical waves in Belousov-Zhabotinsky
(BZ) reaction isO(10−2) m/s [2], while that of hard-
ware RD system will be over a million times faster
than that of the BZ reaction, independently of system

size [3], [4], [5]. This property is useful for develop-
ers of RD applications because every RD application
benefits from the operation speed.

II. T HE REACTION-DIFFUSION SYSTEM

A reaction diffusion (RD) system is described by a
set of partial differential equations

∂xi(r, t)
∂t

= Di∇2xi(r, t) + fi

(
xi(r, t)

)
, (1)

wherer represents the space,t the time,∇2 the spatial
Laplacian,Di the diffusion constant,fi the nonlinear
reactive functions that depend on several different re-
active speciesxi. One well-known reactive function
is described in a two-variable Oregonator, which is
derived from the BZ reaction [1], [6]. The point dy-
namics are given by

dx1

dt
=

1
τ

(
x1 (1− x1)− a x2

x1 − b

b + x1

)
, (2)

dx2

dt
= x1 − x2, (3)

where x1 and x2 represent the concentration of
HBrO2 and Br− ions, respectively, whileτ , a and
b represent the reaction parameters. The value ofτ
is generally set atτ ¿ 1 since the reaction rate of
HBrO2 ion is much faster than that of Br− ions. The
nullclines of the Oregonator wheredx1/dt = 0 and
dx2/dt = 0 are given by

x2 =
x1 (x1 + b)(1− x1)

a (x1 − b)
, (≡ l1) (4)

x2 = x1. (≡ l2) (5)

A cross point of those two nullclines (l1 andl2) repre-
sents a fixed point of the Oregonator.

Figure 1 shows the nullclines and trajectories of the
Oregonator with typical parameter-values (τ = 10−2

andb = 0.02). The value of parametera was set at 1
[Fig. 1(a)] and 3 [Fig. 1(b)]. Depending on the posi-
tion of the fixed point, the Oregonator exhibits oscil-
latory or excitatory behavior. Whena = 1, the fixed
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Fig. 1. Nullclines and trajectories of the Oregonator in (a)
oscillatory mode and (b) excitatory mode.

point is located on nulllclinel1 at whichdx2/dx1 >
0. In this case, the Oregonator exhibits limit-cycle os-
cillations [Fig. 1(a)]. The oscillation represents peri-
odic oxidation-reduction phenomena of the BZ reac-
tion. On the other hand, the fixed point is located on
nulllcline l1 at whichdx2/dx1 < 0 whena = 3. Un-
der this condition, the Oregonator exhibits excitatory
behavior [Fig. 1(b)] and is stable at the fixed point as
long as external stimulus is not given.

In the Oregonator, three circulative states are intro-
duced according to the phase of oscillation; i.e., in-
active (A), active (B→ C), and refractory periods (D
→ A), as labelled in Fig. 1(b). The inactive, active,
and refractory states represent a depletion in the Br−

ion, an autocatalytic increase in the HBrO2 ion (ox-
idation of the catalyzer), and a depletion in the Br−

ion (reduction of the catalyzer), respectively. When
the Oregonator is inactive, it easily become active (A
→ B) by external stimuli. Then, it turns in refractory
state (C→ D). During the refractory state, the Orego-
nator can not be activated even if the external stimuli
was given.

III. A NALOG CMOS CIRCUITS FOR THEBZ
REACTION

We here propose a novel analog cell that is quali-
tatively equivalent to the Oregonator. We define the
dynamics of a cell as

dx1

dt
=

1
τ

(
−x1 + f(x1 − x2, β1)

)
, (6)

dx2

dt
= −x2 + f(x1 − θ, β2), (7)

wheref(·) represents a sigmoid function defined by

f(x, β) =
1 + tanhβx

2
. (8)

The cell dynamics are designed so that the shape of
nullclines and flows (̇x1, ẋ2) are qualitatively equiva-
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Fig. 2. Nullclines and trajectories of the proposed analog
cell in (a) oscillatory mode and (b) excitatory mode.

lent to that of the Oregonator. The cubic nullcline (l1
in Fig. 1) is approximated by a nullcline of Eq. (6) as

x2 = x1 − β−1
1 tanh−1(2x1 − 1), (≡ L1) (9)

while the linear nullcline (l2 in Fig. 1) is approximated
by a nullcline of Eq. (7) as

x2 = f(x1 − θ, β2). (≡ L2) (10)

An analog cell, whose dynamics are described by
Eqs. (6) and (7), is very suitable for analog VLSI im-
plementation because the sigmoid function can easily
be implemented on the VLSIs by using differential-
pair circuits.

The proposed cell exhibits qualitatively equivalent
behaviors to the Oregonator, as shown in Fig. 2. The
values of parameters areτ−1 = 10, β1 = 5 and
β2 = 10. Whenθ = 0.5, the fixed point exists on
a nulllcline [Eq. (9)] wheredx2/dx1 > 0, and the
system exhibits limit-cycle oscillations [Fig. 2(a)]. On
the other hand, the system exhibits excitatory behavior
[Fig. 2(b)] when the fixed point exists on a nulllcline
(10) wheredx2/dx1 < 0 [Fig. 2(b)].

Now, let us introduce the cell dynamics into the RD
model aiming at the constructing 2-D RD system. The
dynamics of the RD system are described by substitut-
ing the reactive term in Eq. (1) with the right terms of
Eqs. (6) and (7). The discrete expression of the RD
system is given by

dui,j

dt
=

1
τ

(
−ui,j + f(ui,j − vi,j , β1)

)
+ gu

i,j , (11)

dvi,j

dt
= −vi,j + f(ui,j − θ, β2) + gv

i,j , (12)

where the system variablexi is replaced byui,j and
vi,j , while gu

i,j andgv
i,j represent external inputs to the

cell (interactions between a cell and its neighboring
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Fig. 3. Numerical results of a RD system using the analog
cell in (a) excitatory mode and (b) oscillatory mode.

cells) as

gu
i,j = Du

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j

h2
,

gv
i,j = Dv

vi−1,j + vi+1,j + vi,j−1 + vi,j+1 − 4vi,j

h2
.

Figure 3 shows spatiotemporal activities of the 2-D
RD system with 50× 50 cells (β1 = 5, β2 = 10,
h = 0.01 and Dv = 0) where the values ofvi,j

are represented in grayscale (vi,j = 0: black,vi,j =
1: white). The Neumann boundary condition was ap-
plied at the side of the square reaction-space. When
τ−1 = 102 andθ = 0.15 at which the cell exhibits ex-
citatory behavior, the 2D system produced target pat-
terns [Fig. 3(a)], as observed in the basic RD system
with the Oregonators. In the simulation, diffusion co-
efficientDu was set at 3×10−4. The results indicate
that the proposed RD system is qualitatively equiva-
lent to the basic RD system with the Oregonators since
the excitatory property of the analog cells is inherently
the same as that of the Oregonator.

Figure 3(b) shows dynamic behaviors of the 2-D
RD system withDu = 10−4 andθ = 0.5 at which the
cell exhibits oscillatory behavior. Initial values of the
cells were randomly chosen asui,j = RAND[0, 1]
andvi,j = RAND[0, 1]. The system produced 2-D
phase-lagged stable synchronous patterns calledmod-
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Fig. 4. An analog cell circuit consisting of single capac-
itor and two operational-transconductance amplifiers
(OTAs).
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Fig. 5. Layout of the analog cell designed with 1.5-µm
CMOS process (cell size: 70× 70µm2).

elock, due to the weak coupling between the neigh-
boring cells. WhenDu > 10−3, all cells exhibit syn-
chronous oscillation, namely, no spatial pattern was
produced.

An analog circuit of the proposed cell and its
device layout are shown in Figs. 4 and 5, respec-
tively. The circuit consists of single capacitor and
two operational-transconductance amplifiers (OTAs),
which implies that the circuit can easily be imple-
mented on silicon VLSIs using conventional CMOS
technology. The circuit can be obtained by qualitative
approximation of Eqs. (6) and (7).

When the rate constant of Eq. (6) is much larger
than that of Eq. (7), the differential term of Eq. (6) can
be neglected (τ ¿ 1), as introduced in Sec. II. On the
other hand, Eq. (7) withβ2 → ∞ forces the values
of variablex2 to be 0 whenx1 ≤ θ, while x2 → 1
whenx1 > θ. If the variablex2 is forced to have the
value within [0:1], the temporal difference in Eq. (7)
can approximately be represented by binary values.
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Fig. 6. Experimental results of the BZ cell

Consequently, we obtain a new dynamical equation
from Eqs. (6) and (7) as

x1 = f(x1 − x2, β1) (13)
dx2

dt
=

{
w (if x1 > θ)
−w (else)

(14)

wherew represent positive and small constant. In
Fig. 4, an OTA labeled asβ1 serves as the function
of Eq. (13), while a capacitorC and the rest OTA re-
ceiving voltageθ produce the dynamics for Eq. (14).
The positive constantw is implemented in the OTA
(labeled asw) wherew corresponds to the source cur-
rent of a differential pair. The output current of the
OTA (w) becomes zero when the voltage of output
nodex2 is equal to the supply voltage (VDD or VSS).
The value ofx2 is thus restricted within [VDD:VSS].

Figure 6 shows experimental results of the fabri-
cated chip that implements the reaction circuit shown
in Fig. 5 (MOSIS 1.5-µm CMOS, cell size: 70× 70
µm2). Supply voltages of an OTA ofβ1 was set at
VDD = 4 V and VSS = 0.5 V, while that of the rest
OTA (w) was set at VDD = 5 V and VSS = GND.
The thresholdθ was set at2.5 V so that the circuit
exhibits oscillatory behaviors. In the device layout
shown in Fig. 5, the capacitorC was implemented by
a MOS capacitor (lower-right rectangle in Fig. 5). As
expected, the circuit exhibited qualitatively same be-
haviors as the Oregonator; i.e., stiff nonlinear oscilla-
tions.

IV. SUMMARY

We proposed an analog CMOS circuit that that im-
itates a model of Belousov-Zhabotinsky (BZ) reac-
tion. Numerical simulations and experimental results

Fig. 7. Chip photograph of 2-D BZ circuits.

of the fabricated chip showed that the circuit can suc-
cessfully produce excitatory responses and thus spiral
waves in the same way as natural reaction-diffusion
(RD) systems. These results encourage us to develop
novel applications based on natural RD phenomena
using the hardware RD devices.

The proposed devices and circuits are useful not
only for the hardware RD system but also for con-
structing modern neuro-chips. The excitatory and os-
cillatory behaviors of the RD circuit are very similar
to actual neurons that produce sequences in time of
identically shaped pulses, calledspikes. Recently,
Fukai showed that an inhibitory network of spiking
neurons achieves robust and efficient neural competi-
tion on the basis of a novel timing mechanism of neu-
ral activity [7]. A network with such a timing mecha-
nism may provide an appropriate platform for the de-
velopment of analog VLSI circuits that overcome the
problems of analog devices, namely their lack of pre-
cision and reproducibility.
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