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Abstract—We propose neuromorphic single-electron
circuits for fundamental neural components in modern
spiking neural networks, aiming at implementing artificial
neural networks on a single or multi-layer nano-dot array.
A unit circuit consists of a pair of single-electron oscilla-
tors. Using these unit circuits with coupling capacitors,
we designed a single-electron neuron circuit that consists
of excitable axons and dendrites, excitatory and inhibitory
synapses, and a soma. We present an application of the
neuron circuit in an inhibitory neural network, where the

neurons compete with each other in the temporal domain. :
h‘ .8

1. Introduction

Figure 1 Micrograph of nano-dot array [2].

Quantum and molecular electronics are expected to push
advances in future VLSI technology far beyond the limits
of silicon CMOS technology. However, robust and fault  single-Electron Circuits for Spiking Neuron Models
tolerant circuit architectures for nano-devices and single-
electron devices are necessary for designing practical quan-To produce action potentials on a nano-dot array (Fig. 1),
tum LSIs because conventional computing methodologiage propose the use of an excitable single-electron tunnel-
for CMOS devices cannot be used for nano-devices, dueiisg (SET) oscillator [shown in Fig. 2(a)]. The oscillator
their uncertainty. Unconventional computing architecturesonsists of a tunneling junctioit’(), a resistive devicef),
for nano-devices are thus required. A neural network is orend a bias voltage sourc&(;). The oscillator has an is-
of the primary components for such an architecture. land noden; where excess electrons are stored. Figure 2(b)

Likharev et al. recently proposed novel neuromorphicis a nominal phase diagram of this circuit for positig;.
concepts for hybrid VLSIs that combine a layer of ad-The vertical and horizontal axes represent node voltage
vanced CMOS devices for neurons with two mutually perand a tunneling phenomenon [= 1 (when an electron tun-
pendicular arrays of parallel nanowires for axons and demels), 0 (else)] a’;. Note that trajectories between the
drites [1]. Here, we propose neuromorphic circuits for aunneling phenomenon (0 and 1) in the figure do not have
nano-dot array(See Fig. 1) that has already been fabriany quantitative physical meaning but have been used only
cated [2]. Our neuron circuit consists of excitable axong explain this circuit's operation. We have assumed that
and dendrites, excitatory and inhibitory synapses, and&q < e/2C; (= Vr: tunneling threshold voltage of junc-
soma. Since our synapse circuit cannot store connectitinn C;). Since tunneling junction; is charged by/aq [(i)
weights between neurons at present, neural networks with Fig. 2(b)], the circuit is stable whem;, = V4. Under
no variable weights, or, networks in which weights are repthis resting condition, if:; is further increased by an ex-
resented by dynamics, will be best suited to the circuit'ternal input and exceedsgr, an electron tunnels from the
application. As an example, we used an inhibitory compeground to node through junctionC;, which results in the
itive neural network that had been implemented on CMOSudden decrease of from Vi to —Vir [(ii) in Fig. 2(b)].
VLSIs [3]. We demonstrate basic operation of the proposethen V4 starts charging’; and the circuit become stable
devices and their competitive performance through circuggain [(i) in Fig. 2(b)]. Note that there is a time lag from
simulations. We considered the noise-tolerance of the nethen the junction voltage exceeily to when tunneling
work, and discuss possible implementation of the proposexdttually occurs. We utilized this “monostable” (excitable)
circuits in this paper and future synaptic memory devicesscillatory property to produce action potentials in spiking
using single-electron circuits. neural networks.
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To propagate action potentials on a nano-dot array, we

used a chain of monostable single-electron oscillators. Fig-
ure 3(a) shows a unit circuit where two single-electron os-

Figure 5 Single-electron neuron circuit.

cillators are connected laterally through a coupling capac- ~ €Xcitatory synapse

itor (C). They are biased by positivé/{y) and negative Vi +Vdd' e
supply voltages{Vy4). External input is a voltage pulse

and is applied to the unit circuit through a buffering ca- C2
pacitor (Cy,). Figure 3(b) is a nominal phase diagram of a :

single-electron oscillator biased by negative supply voltage 4/ '”h'g,t%%’se

—V4q. The unit circuit becomes stable when = Vg .

andn, = —Vyq. Under this resting condition, by apply- axon -—
ing a pulse voltage that makes > Vr, ny is suddenly
decreased tolsr and junctionC; is then charged up to
n; = Vyq. This sudden decreasein also decreases,
because of coupling capacitancCeIf this sudden decrease
makesn, < —V7p, an electron tunnels from nodeto the electron dendrites and axons. Action potentials from den-
ground through junctioild’z, which results in a sudden in- drites lead to electron tunneling at junctiéh, which re-
crease ohy from —Vir to Vo [(i) in Fig. 3(b)]. Then—V44  sults in subsequent electron tunneling at junctiélsCs,
starts charging’, and the circuit become stable again [(ii)and C,. JunctionC} is biased by positive voltag;, so
in Fig. 3(b)]. Consequently, electron tunneling at junctiorthat electron tunneling af's is not evoked by a single os-
(1 triggered by the external voltage pulse is transmitted toillator but multiple oscillators; e.g., 3 oscillators in Fig. 5.
subsequent electron-tunneling at junction. Therefore, Therefore, simultaneous electron tunneling at 3 junctions
if we connect several unit circuits serially as can be seqi@;, Cs, andC,) leads to electron tunneling &f. Action
in Fig. 4 (open and closed circles represent island nodgstentials from dendrites are therefore transmitted to the
biased by positive and negative voltages, respectively), axon. Action potentials from the axon, on the other hand,
electron-tunneling “phenomenon” is transmitted througheo not lead to electron tunneling &t because electron
out the array. tunneling at only one junction({s) cannot evoke subse-
Our axon and dendrite circuits are bidirectional spikeguent tunneling af’s.
transmission devices. Again, we assumed that a somaFigure 6 is a diagram of the single-electron synaptic cir-
would accept spike trains from dendrites and transfers theaiuit we propose. The circuit connects dendrites and axons
sum to the axon. The soma is thus not a bidirectionalith fixed weight strength (developing a variable weight-
transfer device but should be unidirectional. Figure 5 illusstorage circuit is another subject altogether). Excitatory
trates our unidirectional soma circuit coupled with singleand inhibitory synapses are thus represented by coupling

: '—» dendrite

Figure 6 Single-electron synapse circuits.
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Figure 7 Single-electron inhibitory network for temporal-domain

neural competition.
cannot propagate on axons through synapses because each
axon is directly connected with a soma that prohibits spike

. ) . transmission from the axon to dendrites.
capacitors between axons and dendrites. If an oscillator b"Figure 8 illustrates signal flows of spike trains when

ased by n_egative (or posit_ive) vol_tage in an axon circuitisy — 3. |n this example, neurof, accepts afferent spike
coupled with the other oscillator biased by positive (or neggains first. It transmits them to all dendrites through synap-
ative) voltage in a dendrite circuit, spike trains in axons arge capacitors, which generates efferent spike trains on the
transmitted to dendrites. However, spike trains in dendriteganrites. Subsequent afferent spike trains are annihilated
are blocked (inhibited) when an oscillator biased by negg;y these efferent spike trains, which results in the inhibition
tive (or positive) voltage in axon circuits is coupled with thegt neyrons. This phenomenon (“first come, first served” or
other oscillator biased by negative (or positive) voltage iRgayly arrival matters”) represents temporal-domain neural
dendrites. For example, electron tunneling-atin Fig. 6 competition. Again note that the term “inhibition” used
blocks spike trains on dendrites @ because both node pere s not the conventional meaning of inhibition. Actu-
voltages ofC', andC'; are decreased by tunneling @, gy, it is “excitation” to produce efferent spike trains that
which prevents subsequent electron tunneling-at annihilate afferent-input spike trains.

3. Application of Neuromorphic Single-Electron Cir- 4. Simulation Results

cuits to Temporal-Domain Neural Competition

We simulated the proposed circuits with = 3 using a

To demonstrate our single-electron neuron circuits, wmodified Monte Carlo method [4]. In the simulations, the
constructed an inhibitory neural network in which the neusupply voltage ¥44), bias voltage ¥1,), resistanceR), ca-
ron circuits are coupled to each other through all-to-alpacitance €;), and conductance of a tunnel junction were
inhibitory connections of equal strength. Afferent inputset at 4.4 mV, 2.4 mV, 440 B, 10 aF, and 4.S, respec-
were encoded as spike timing. Encoding the input as spikévely. The coupling and buffering capacitances were set
timing code meant that the strength was equivalent to thet 2 aF. Each neuron receives periodic spikes from affer-
timing of spike generation relative to the timing of its ex-ent inputs. The inter-spike interval was set at 30 ns. The
ternal periodic input. time-lag between each afferent input was set at 3 ns, and

Figure 7 shows the inhibitory neural network consistinghode “A” accepted the first spike. Figure 9 plots the time
of N neurons andV? synapses, wheres and © repre- courses for node voltages at the input nodes (“A”, “B”, and
sent single-electron oscillators biased by positive and netfe” in Fig. 7) and somas (“D”, “E”, and “F" in Fig. 7)
ative voltages. Afferent inputs (voltage pulses) are appliegthen the temperature was set at O K. As expected, only one
at the end of dendrites. Each soma circuit accepts spikeuron “D” that received the first afferent input produced
trains from dendrites. In the figure, axons are representeditput spikes and resting neurons “E” and “F” did not pro-
by wires instead of transmission circuits because the asluce output spikes, which indicates that competition in the
rival timing of spike trains on dendrites is responsible fotime domain was successfully achieved by having inputs
this application. Axons are connected to synaptic capadiat carried encoding in the form of spike timing.
tors. Since the output of each somagissynaptic capaci-  Our next interest is thermal-noise tolerance in the single-
tors connected te represent an excitatory synapse, whileslectron neural network. Table 1 shows the accuracy (suc-
capacitors connected to act as an inhibitory one. Con- cess rate) dependence of neural competition on the net-
sequently, spike trains on axons produce “efferent” spikeork’s temperature antlyq. The rate was calculated using
trains on dendrites. Note that spike trains on dendritebe ratio of the number of spikes that arrived at the winning
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Figure 9 Time course for input (A-C) and output (D-F) nodes.

oscillator coupled with several neighbors. The multiple-
tunneling-junction oscillator is preferable for this element

Vaa | 38mv!amv | a2mv | 24my | because it can be made without high resistance, which is
Temp difficult to implement on an LSI chip. Figure 10 shows
0K 0.04 0.88 0.96 1 possible three-dimensional and cross-sectional schematics
0.01K 0 0.79 1 1 for the possible structure of the device. Each oscillator
0.1K 0.01 0.79 1 1 consists of a conductive nanodot with four coupling arms,
1K 0.21 0.38 0.08 0.2 and there is a tunneling junction between the nanodot and

the conductive substrate beneath it. Many series-connected
Table 1 Calculated accuracy (success rate) for variable tempejanctions run between the nanodot and a positive-bias or
ture andVag. a negative-bias electrode. Capacitive coupling between

neighboring oscillators can be achieved by laying their cou-

ling arms close to each other.
neuron to that of afferent spikes (25 afferent spikes durin% g

750 ns). We averaged three sets of simulation results with
different random seeds. When the temperature was lower
than 0.1 K and_/(_id = 4.4 mV, the circuit exhibited perfect E'] K. Likharev, A. Mayr, |
neural competition. Ad,4 decreased, the rate decrease

as well because lowy prevents spike trains on dendrites.
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