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Abstract—We propose neuromorphic single-electron
circuits for fundamental neural components in modern
spiking neural networks, aiming at implementing artificial
neural networks on a single or multi-layer nano-dot array.
A unit circuit consists of a pair of single-electron oscilla-
tors. Using these unit circuits with coupling capacitors,
we designed a single-electron neuron circuit that consists
of excitable axons and dendrites, excitatory and inhibitory
synapses, and a soma. We present an application of the
neuron circuit in an inhibitory neural network, where the
neurons compete with each other in the temporal domain.

1. Introduction

Quantum and molecular electronics are expected to push
advances in future VLSI technology far beyond the limits
of silicon CMOS technology. However, robust and fault-
tolerant circuit architectures for nano-devices and single-
electron devices are necessary for designing practical quan-
tum LSIs because conventional computing methodologies
for CMOS devices cannot be used for nano-devices, due to
their uncertainty. Unconventional computing architectures
for nano-devices are thus required. A neural network is one
of the primary components for such an architecture.

Likharev et al. recently proposed novel neuromorphic
concepts for hybrid VLSIs that combine a layer of ad-
vanced CMOS devices for neurons with two mutually per-
pendicular arrays of parallel nanowires for axons and den-
drites [1]. Here, we propose neuromorphic circuits for a
nano-dot array(See Fig. 1) that has already been fabri-
cated [2]. Our neuron circuit consists of excitable axons
and dendrites, excitatory and inhibitory synapses, and a
soma. Since our synapse circuit cannot store connection
weights between neurons at present, neural networks with
no variable weights, or, networks in which weights are rep-
resented by dynamics, will be best suited to the circuit’s
application. As an example, we used an inhibitory compet-
itive neural network that had been implemented on CMOS
VLSIs [3]. We demonstrate basic operation of the proposed
devices and their competitive performance through circuit
simulations. We considered the noise-tolerance of the net-
work, and discuss possible implementation of the proposed
circuits in this paper and future synaptic memory devices
using single-electron circuits.

Figure 1 Micrograph of nano-dot array [2].

2. Single-Electron Circuits for Spiking Neuron Models

To produce action potentials on a nano-dot array (Fig. 1),
we propose the use of an excitable single-electron tunnel-
ing (SET) oscillator [shown in Fig. 2(a)]. The oscillator
consists of a tunneling junction (Ci), a resistive device (R),
and a bias voltage source (Vdd). The oscillator has an is-
land nodeni where excess electrons are stored. Figure 2(b)
is a nominal phase diagram of this circuit for positiveVdd.
The vertical and horizontal axes represent node voltageni

and a tunneling phenomenon [= 1 (when an electron tun-
nels), 0 (else)] atCi. Note that trajectories between the
tunneling phenomenon (0 and 1) in the figure do not have
any quantitative physical meaning but have been used only
to explain this circuit’s operation. We have assumed that
Vdd < e/2Ci (≡ VT: tunneling threshold voltage of junc-
tion Ci). Since tunneling junctionCi is charged byVdd [(i)
in Fig. 2(b)], the circuit is stable whenni = Vdd. Under
this resting condition, ifni is further increased by an ex-
ternal input and exceedsVT, an electron tunnels from the
ground to nodei through junctionCi, which results in the
sudden decrease ofni from VT to −VT [(ii) in Fig. 2(b)].
ThenVdd starts chargingCi and the circuit become stable
again [(i) in Fig. 2(b)]. Note that there is a time lag from
when the junction voltage exceedsVT to when tunneling
actually occurs. We utilized this “monostable” (excitable)
oscillatory property to produce action potentials in spiking
neural networks.
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Figure 2 Single-electron oscillator and phase diagram.
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Figure 3 Unit circuit for single-electron neuron circuit.

To propagate action potentials on a nano-dot array, we
used a chain of monostable single-electron oscillators. Fig-
ure 3(a) shows a unit circuit where two single-electron os-
cillators are connected laterally through a coupling capac-
itor (C). They are biased by positive (Vdd) and negative
supply voltages (−Vdd). External input is a voltage pulse
and is applied to the unit circuit through a buffering ca-
pacitor (Cb). Figure 3(b) is a nominal phase diagram of a
single-electron oscillator biased by negative supply voltage
−Vdd. The unit circuit becomes stable whenn1 = Vdd

andn2 = −Vdd. Under this resting condition, by apply-
ing a pulse voltage that makesn1 ≥ VT, n1 is suddenly
decreased to -VT and junctionC1 is then charged up to
n1 = Vdd. This sudden decrease inn1 also decreasesn2

because of coupling capacitanceC. If this sudden decrease
makesn2 ≤ −VT , an electron tunnels from node2 to the
ground through junctionC2, which results in a sudden in-
crease ofn2 from−VT to VT [(i) in Fig. 3(b)]. Then−Vdd

starts chargingC2 and the circuit become stable again [(ii)
in Fig. 3(b)]. Consequently, electron tunneling at junction
C1 triggered by the external voltage pulse is transmitted to
subsequent electron-tunneling at junctionC2. Therefore,
if we connect several unit circuits serially as can be seen
in Fig. 4 (open and closed circles represent island nodes
biased by positive and negative voltages, respectively), an
electron-tunneling “phenomenon” is transmitted through-
out the array.

Our axon and dendrite circuits are bidirectional spike-
transmission devices. Again, we assumed that a soma
would accept spike trains from dendrites and transfers their
sum to the axon. The soma is thus not a bidirectional
transfer device but should be unidirectional. Figure 5 illus-
trates our unidirectional soma circuit coupled with single-
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Figure 4 Single-electron axons and dendrites.
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Figure 5 Single-electron neuron circuit.
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Figure 6 Single-electron synapse circuits.

electron dendrites and axons. Action potentials from den-
drites lead to electron tunneling at junctionC1, which re-
sults in subsequent electron tunneling at junctionsC2, C3,
andC4. JunctionC5 is biased by positive voltageVL so
that electron tunneling atC5 is not evoked by a single os-
cillator but multiple oscillators; e.g., 3 oscillators in Fig. 5.
Therefore, simultaneous electron tunneling at 3 junctions
(C2, C3, andC4) leads to electron tunneling atC5. Action
potentials from dendrites are therefore transmitted to the
axon. Action potentials from the axon, on the other hand,
do not lead to electron tunneling atC5 because electron
tunneling at only one junction (C6) cannot evoke subse-
quent tunneling atC5.

Figure 6 is a diagram of the single-electron synaptic cir-
cuit we propose. The circuit connects dendrites and axons
with fixed weight strength (developing a variable weight-
storage circuit is another subject altogether). Excitatory
and inhibitory synapses are thus represented by coupling
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Figure 7 Single-electron inhibitory network for temporal-domain
neural competition.

capacitors between axons and dendrites. If an oscillator bi-
ased by negative (or positive) voltage in an axon circuit is
coupled with the other oscillator biased by positive (or neg-
ative) voltage in a dendrite circuit, spike trains in axons are
transmitted to dendrites. However, spike trains in dendrites
are blocked (inhibited) when an oscillator biased by nega-
tive (or positive) voltage in axon circuits is coupled with the
other oscillator biased by negative (or positive) voltage in
dendrites. For example, electron tunneling atC1 in Fig. 6
blocks spike trains on dendrites atC2 because both node
voltages ofC1 andC2 are decreased by tunneling atC1,
which prevents subsequent electron tunneling atC2.

3. Application of Neuromorphic Single-Electron Cir-
cuits to Temporal-Domain Neural Competition

To demonstrate our single-electron neuron circuits, we
constructed an inhibitory neural network in which the neu-
ron circuits are coupled to each other through all-to-all
inhibitory connections of equal strength. Afferent inputs
were encoded as spike timing. Encoding the input as spike-
timing code meant that the strength was equivalent to the
timing of spike generation relative to the timing of its ex-
ternal periodic input.

Figure 7 shows the inhibitory neural network consisting
of N neurons andN2 synapses, where⊕ andª repre-
sent single-electron oscillators biased by positive and neg-
ative voltages. Afferent inputs (voltage pulses) are applied
at the end of dendrites. Each soma circuit accepts spike
trains from dendrites. In the figure, axons are represented
by wires instead of transmission circuits because the ar-
rival timing of spike trains on dendrites is responsible for
this application. Axons are connected to synaptic capaci-
tors. Since the output of each soma is⊕, synaptic capaci-
tors connected toª represent an excitatory synapse, while
capacitors connected to⊕ act as an inhibitory one. Con-
sequently, spike trains on axons produce “efferent” spike
trains on dendrites. Note that spike trains on dendrites

somadendrite axons

synapse
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spike train
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Figure 8 Signal flows of spike trains in single-electron network.

cannot propagate on axons through synapses because each
axon is directly connected with a soma that prohibits spike
transmission from the axon to dendrites.

Figure 8 illustrates signal flows of spike trains when
N = 3. In this example, neuronS1 accepts afferent spike
trains first. It transmits them to all dendrites through synap-
tic capacitors, which generates efferent spike trains on the
dendrites. Subsequent afferent spike trains are annihilated
by these efferent spike trains, which results in the inhibition
of neurons. This phenomenon (“first come, first served” or
“early arrival matters”) represents temporal-domain neural
competition. Again note that the term “inhibition” used
here is not the conventional meaning of inhibition. Actu-
ally, it is “excitation” to produce efferent spike trains that
annihilate afferent-input spike trains.

4. Simulation Results

We simulated the proposed circuits withN = 3 using a
modified Monte Carlo method [4]. In the simulations, the
supply voltage (Vdd), bias voltage (VL), resistance (R), ca-
pacitance (Ci), and conductance of a tunnel junction were
set at 4.4 mV, 2.4 mV, 440 MΩ, 10 aF, and 4µS, respec-
tively. The coupling and buffering capacitances were set
at 2 aF. Each neuron receives periodic spikes from affer-
ent inputs. The inter-spike interval was set at 30 ns. The
time-lag between each afferent input was set at 3 ns, and
node “A” accepted the first spike. Figure 9 plots the time
courses for node voltages at the input nodes (“A”, “B”, and
“C” in Fig. 7) and somas (“D”, “E”, and “F” in Fig. 7)
when the temperature was set at 0 K. As expected, only one
neuron “D” that received the first afferent input produced
output spikes and resting neurons “E” and “F” did not pro-
duce output spikes, which indicates that competition in the
time domain was successfully achieved by having inputs
that carried encoding in the form of spike timing.

Our next interest is thermal-noise tolerance in the single-
electron neural network. Table 1 shows the accuracy (suc-
cess rate) dependence of neural competition on the net-
work’s temperature andVdd. The rate was calculated using
the ratio of the number of spikes that arrived at the winning
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Figure 9 Time course for input (A-C) and output (D-F) nodes.

PPPPPPPPTemp
Vdd 3.8 mV 4 mV 4.2 mV 4.4 mV

0 K 0.04 0.88 0.96 1
0.01 K 0 0.79 1 1
0.1 K 0.01 0.79 1 1
1 K 0.21 0.38 0.08 0.2

Table 1 Calculated accuracy (success rate) for variable tempera-
ture andVdd.

neuron to that of afferent spikes (25 afferent spikes during
750 ns). We averaged three sets of simulation results with
different random seeds. When the temperature was lower
than 0.1 K andVdd = 4.4 mV, the circuit exhibited perfect
neural competition. AsVdd decreased, the rate decreases
as well because lowVdd prevents spike trains on dendrites.

5. Discussion

We designed a single-electron neuron circuit, aiming at
exploring robust and fault-tolerant circuit architectures for
nano-devices. We observed expected neural competition at
quite a low temperature (≤ 1 K). A possible solution to fur-
ther increase the operation temperature is to leave several
winners (not one) to represent a winning “cluster” [3]. Al-
though a large number of neurons are required, it will be
an appropriate method of constructing fault-tolerant nano-
electronics systems.

Single-electron memory devices that store synaptic
weights are necessary for constructing practical neural de-
vices. To store the weights, we are trying to use a real-time
memory on excitable fields where action potentials propa-
gate on a circular excitable field and the direction of waves
represents binary values [5].

The primary element in our circuit is a single-electron
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Figure 10 Possible structure of single-electron neural device.

oscillator coupled with several neighbors. The multiple-
tunneling-junction oscillator is preferable for this element
because it can be made without high resistance, which is
difficult to implement on an LSI chip. Figure 10 shows
possible three-dimensional and cross-sectional schematics
for the possible structure of the device. Each oscillator
consists of a conductive nanodot with four coupling arms,
and there is a tunneling junction between the nanodot and
the conductive substrate beneath it. Many series-connected
junctions run between the nanodot and a positive-bias or
a negative-bias electrode. Capacitive coupling between
neighboring oscillators can be achieved by laying their cou-
pling arms close to each other.
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