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Abstract—We demonstrate a possible application of
“steganography” in a reaction-diffusion (RD) cellular au-
tomata (CA) model. Steganography is one of the lat-
est techniques that conceal some data (messages) in other
data-like images. Recently, a secure communication al-
gorithm based on self-organizing patterns generated by a
prey-predator RD model was proposed [1, 2]. In contrast,
we employ a simple CA model [3] for steganography appli-
cations instead of using the prey-predator RD model. The
model generates Turing-like patterns, e.g., stripe and spot
patterns observed in human fingerprints, marking patterns
on animal skins, etc. This model has simple dynamics and
generates stripe or spot patterns at its equilibrium within
a few cycles, which implies that the model is suitable for
hardware implementation for a steganography application.
Through extensive numerical simulations, we demonstrate
steganography using the RD CA model in which messages
can be encoded and decoded while concealing the mes-
sages in communication channels.

1. Introduction

Alan Turing proposed the concept of “diffusion-driven
instability” for phenomena in systems where diffusion en-
hances the transition from a homogeneous state to a spa-
tially inhomogeneous stable state. Time development in
systems is described by the sum of reaction and diffusion
in these systems [4, 5]. Reaction represents the local pro-
duction or execution of the state, and diffusion represents a
transport process that tends to dampen any inhomogeneity
in the neighboring region. Self-organized stripe or spot pat-
terns are observed in nature, e.g., the surfaces of animals,
fish, etc. In particular, the Turing model can generate sta-
ble stripe or spot patterns by controlling the parameter set.
In this study, we exhibit a possible application of such RD
systems to steganography.

Steganography is one of the latest data-hiding meth-
ods. Cryptography (or alternate data-hiding technique) is
a method that is used to cipher data for data communica-
tion or storage. The cryptographic algorithm is designed
to protect data from malicious users. On the other hand,
steganography hides data within other data, such that only
the sender and receiver know the existence of the hidden
data. Hence, steganography conceals hidden data as well as

the sender and receiver. This is an advantage of steganog-
raphy in comparison to cryptography, which only protects
messages. In steganographic communication, the sender
conceals a message within an image and sends the ciphered
message to the receiver. During that time, an intruder who
has picked up the image can view the image but not read
the message and is not even aware of the existence of the
message. Only the receiver can extract the hidden message
using a key. It is possible that a computational analysis us-
ing a statistical distribution can extract the hidden message,
but human eyes cannot detect the hidden message.

When we apply the RD system to steganography, a ran-
dom initial pattern image and a RD parameter set are used
as keys [1, 2]. The sender hides a message within the ran-
dom pattern and generates a stripe pattern with RD. The
receiver extracts the hidden message from the difference
in the stripe patterns obtained from an initial pattern (key)
and the received image that includes the message. Though
some malicious users can sniff the hidden message, they
cannot create a key stripe pattern from a random initial state
and cannot extract the hidden message.

2. Reaction-diffusion Cellular Automata Model

In this study, we used a RD CA model presented in [3].
In this model, each state of a cell is determined by the sig-
moid function and the weighted-sum computation that in-
teracts with four adjacent cells. The weighted-sum compu-
tation means that activators and inhibitors diffuse in indi-
vidual diffusion fields, and they are convoluted in each of
the cells. Each state in the cells is computed as the differ-
ence between the states of activators,u, and inhibitors,v, at
each point of the cells, (x, y). The diffusion equations foru
andv are integrated for a timeδt. Then, a cell’s subsequent
state is determined by the value of the sigmoid function for
u− v. The dynamics are described as

1(Diffusion)

∂u(r, t)/∂t = Du∇2u(r, t),

∂v(r, t)/∂t = Dv∇2v(r , t),

2(Reaction)

u(r, δt(n+ 1)) = v(r, δt(n+ 1))

= f (u(r, δt · n) − v(r, δt · n)− c),
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Figure1: The process of generating stripe patterns in a one-
dimensional RD model: (a) initial conditions (step func-
tion), (b) after diffusion for∆t0, (c) after diffusion for∆t1 -
∆t0, (d) subtraction of the activator from the inhibitor, and
(e) the subtraction in (d) amplified by the sigmoid function.

f (x) = (1+ exp(−βx))−1,

wheren represents the time step,r represents (x, y), c is
the offset value of the sigmoid function, andβ is the mea-
sure of steepness of the function. This sequential opera-
tion is defined as “one cycle”. Figure 1 shows the process
of forming a spatiotemporal stripe in one-dimensional RD.
This process requires a diffusion field and is equivalent to
the abovementioned dynamics. Figure 1 (a) shows an ini-
tial condition with a step function. After diffusion for∆t0,
the step function has a slope that corresponds to the diffu-
sion using a factorDv for ∆t0 in Fig.1 (b). After diffusion
for ∆t1 - ∆t0, the step function has a slope that corresponds
to the diffusion withDu for ∆t0 in Fig.1 (c). Figure 1 (d)
shows the difference of Figs.1 (b) and (c), that corresponds
to the difference of activators and inhibitors. Finally, this
difference is amplified by a sigmoid function in (Fig.1 (e)).
A wave pattern is formed by repeating this process. In the
same manner, Fig.2 shows an example of stripe pattern for-
mation for a two-dimensional model. After approximately
eight cycles, a stable stripe pattern is formed.

 initial state  two RD cycles four RD cycles

six RD cycles eight RD cycles stable state

Figure 2: Snapshots of striped patterns for a two-
dimensional model with a random initial distribution.
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Figure 3: One-dimensional model of RD steganography.
The vertical axis shows the normalized state of the pixels,
i.e., prior to starting and after completion of the RD pro-
cess. (a) Initial pattern with random initial conditions. (b)
Initial pattern that has been perturbed in rows 43 through
47 in an subtractive way. (c) Subtractive perturbation pat-
tern. (d) Final pattern that developed from the random ini-
tial conditions. (e) Final pattern that developed from the
perturbed initial conditions. (e) Difference of the states in
(d) and (e).

3. One-dimensional RD Steganography

In this section, we apply RD (the abovementioned wave-
form process) to steganography and show the principle of
RD-steganography for a one-dimensional case consisting
in an array of 100 pixels with 8-bit values in Fig.3. First,
the cyclic boundary conditions are set that enable the gener-
ation of a pattern with constant spatial frequency. Then, the
initial pixel values are defined from a white noise number
generator. Next, we include a subtractive perturbation as a
steganographic hidden message to the initial random value.
The perturbation causes the pixels in rows 43 through 47
to decrease by approximately 10% of their initial inten-
sity value. The initial condition is presented in Fig.3 (a),
and the perturbed initial condition is presented in Fig.3 (b).
Figure 3 (c) shows the difference between the initial and
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perturbedcondition as the hidden message. After repeating
six RD cycles, the stable wave states presented in Figs.3 (d)
and (e) look similar. Therefore, the message is hidden in a
wave pattern using RD. When the pixel values of the unper-
turbed state are subtracted from the perturbed state, we can
extract the hidden message shown in Fig.3 (f). Its general
shape results from the difference of Gaussians that repre-
sent the impulse response related to the step-like nature of
the applied perturbation. The first zero-crossing around the
central peak corresponds to the edges of the initial hidden
pattern.

4. Two-dimensional RD Steganography

In this section, we extend RD-based steganography to
two-dimensional images for steganography applications.
Here, we conceal a character and an image as a perturbation
into an initial random pattern that become indistinguishable
using visual or analytical methods after a sufficient number
of RD cycles.

In Fig.4, the basic shape representing a “T” is encrypted
as a perturbation of the random initial state consisting of
groups of 4× 4 pixels that indicate the contour of the “T”
under a solid block. Square dots are used to define the per-
turbation areas in a 100× 100 pixel image, indicating the
contours of the “T”. The size and perturbation parameters
are the same as defined earlier. The dot pitch is equal to 8
pixels, and no boundary conditions are set. Figure 4 (a)
shows the visible dotted “T” perturbing the initial state.
After six RD cycles, Fig.4 (b) shows the striped pattern
with the perturbation, in which we cannot find the hidden
character “T”. Figure 4 (c) shows the initial random pattern
without perturbation. After six RD cycles, a striped pattern
is formed, as seen in Fig.4 (d). The striped patterns ob-
tained in Figs.4 (b) and (d) are visually very similar, while
not strictly identical striped patterns. Existing discrepan-
cies enable extracting the hidden message in RD-based
steganography for still images. The difference of the inten-
sity values observed between Figs.4 (b) and (d) is shown in
Fig.4 (e). The dotted “T” that was initially hidden as a per-
turbation of an initial random pattern is clearly observed;
however, the boundaries have diffused into the surrounding
regions. Further, the two-dimensional difference of Gaus-
sians is also observed, similar to the one-dimensional case.
Thus, we have demonstrated the encoding and decoding of
a message using RD-based steganography.

The possibility of hiding natural images using RD-based
steganography is demonstrated in Fig.5. The nature of the
hidden pattern also influences the visual results of the RD-
based steganographic ciphering-deciphering process. The
initial random pattern intensity value of each pixel is per-
turbed by decreasing its value by approximately 20% of
the corresponding full-range intensity of a pixel in the nat-
ural image. The fundamentals of RD systems dictate that
recovering the natural image in its full dynamic range is
not possible. Edges are detectable as the unique remaining
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Figure4: Two-dimensional pattern evolution with striped
formation parameters. The shape of a “T” is hidden, which
is formed by a solid-block perturbation. (a) Initial per-
turbed state. (b) Pattern state after six RD cycles. (c) Initial
random image state. (d) Pattern state after six RD cycles.
(e) Image resulting from the difference of images in (b) and
(d).
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Figure5: Two-dimensional pattern evolution with striped
formation parameters. A natural image (peppers) is hidden,
which is formed by a solid-block perturbation. (a) Initial
perturbed state. (b) Pattern state after six RD cycles. (c)
Initial random image state. (d) Pattern state after six RD
cycles. (e) Image resulting from the difference of images
in (b) and (d).

feature.

The parameter set for the RD process is identical to the
parameter set used earlier withC = 0, while image sizes
of 512× 512 pixels are used. The visible natural image
perturbing the initial random state is shown in Fig.5 (a).
After six RD cycles, a striped pattern is formed from the
perturbed initial random image, and the original image can-
not be seen, as in Fig.5 (b). Figure 5 (c) shows the initial
random state without perturbation. After six RD cycles,
a striped pattern has formed in Fig.5 (d). The difference
of the intensity values observed in Figs.5 (b) and (d) is
shown in Fig.5 (e), as in the case where a character was
hidden. Figure 5 (e) shows the natural image reconstruc-
tion enabling the detection and visualization of the edges
from the original image by subtraction. In this method, the
detection of edges in an image is possible, but recovering
an image in its full dynamic range is not possible.
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Figure6: A method for a secure communication using RD-based steganography.

In Fig.6, we demonstrate how to realize secure commu-
nication using RD-based steganography. A sender attempts
to send a secret message in the form of an image to a re-
ceiver. The sender and receiver possess an identical key
that consists of the initial random image in Figs.6 (a) and
(b), as well as the RD parameters, image size,β, C, Du, and
Dv in RD cycles. The sender encodes the message as a per-
turbation applied to the initial random pattern and allows
the image to evolve through the RD system. Figure 6 (e) is
a result of the cryptographic process, which is the message
that is sent through the communication link. Upon receiv-
ing the message, the receiver applies the RD process to the
image part of the key, obtaining Fig.6 (c). The final step
consists of subtracting the message from the RD-evolved
image part of the key to extract the encoded message in
Fig.6 (g). Intercepting the transmitted message in Fig.6 (e)
is of no use without the full key (the initial random image
state and the RD parameters) under the condition that the
image remains visually hidden, i.e., the striped pattern is
not prominently interrupted by channels of homogeneous
intensity value that follow the contours of the hidden im-
age. This latter condition is visually verified prior to send-
ing the message, and the RD parameters and the intensity
of the perturbation are adapted to fulfill the secrecy crite-
rion.

5. Conclusion

We demonstrated that the RD CA model is an effective
model for RD-based steganography. Using this model, we
hid and extracted messages (a character and an image for
perturbating the initial state) by finding the difference be-
tween the initial random image state including messages
and the RD-evolved image part of the key. This RD-model

has simple dynamics and reaches an equilibrium stripe state
quickly; thus, the computational costs are low. Therefore,
we exhibited that the model is suitable for hardware appli-
cation and are working on a hardware implementation of
RD-based steganography using this model. We expect the
realization of fast encoding and decoding of messages us-
ing RD-based steganography. Furthermore, we will be able
to treat larger-sized images using the application hardware.
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