
Reservoir computing with high-order polynomial activation functions and
regenerative internal weights for enhancing nonlinear capacity and

hardware resource efficiency

Yuki Abe†, Kohei Nishida††, Megumi Akai-Kasaya‡,‡†, and Tetsuya Asai‡

†Graduate School of IST / ‡Faculty of IST , Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

††Faculty of Engineering, Hokkaido University
Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

‡†Department of Chemistry, Graduate School of Science, Osaka University
1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan

Email: abe.yuki.cx@ist.hokudai.ac.jp

Abstract— This report describes a method to achieve re-
source efficiency and accurate prediction in hardware im-
plementation of Reservoir Computing. We discuss the per-
formance of the proposed method and architecture in terms
of their impact on resource efficiency and various bench-
mark scores.

1. Introduction

Reservoir Computing (RC) is a field of research that con-
nects nonlinear science and artificial intelligence (AI) [?].
While conventional AI approaches intelligence from the
perspective of the brain structure, RC is a machine learn-
ing framework that leverages the in/out characteristics of
nonlinear dynamical systems to process information. Due
to its unique approach, various implementations have been
proposed, including physical implementations [2, 3]. Re-
gardless of the implementation target, RC has the ability
to evaluate the information processing capacity of any sys-
tem, making it a significant area of research in nonlinear
science [4]. Furthermore, RC is expected to provide a so-
lution for edge computing due to its low operating resource
requirements [5]. This study proposes a method to reduce
resource usage in hardware implementations of RC by uti-
lizing regenerative internal weights, as well as a method to
expand nonlinear capacity through high-order polynomials.
Using the proposed architecture, we have confirmed that
the hardware resources required for network weights can be
reduced to less than 1% of those required by conventional
methods. Additionally, our system has demonstrated supe-
rior performance, achieving 6-9th order nonlinear capacity,
which is difficult to achieve with conventional methods.

ORCID iDs Yuki Abe: 0009-0001-8793-3203, Kohei Nishida:
0000-0001-6064-5917, Megumi Akai-Kasaya: 0000-0003-2217-

9382, Tetsuya Asai: 0000-0003-1158-9810

2. Reservoir Computing

RC is a type of Recurrent Neural Network (RNN) model
known for its lower computational resource requirements
for learning compared to existing RNN models[1]. This
model differs from existing RNN models in that the neu-
ral network is separated from the learning system. In this
model, the fixed structure network is called the ”Reser-
voir”, and the separated learning system is called the
”Readout”, as shown in Figure 1. The Reservoir acts as

Figure 1: Basic RC model

a kernel for Support Vector Machines, making complex su-
pervisors linearly separable. The Readout is the learning
system, and most of them are implemented as linear re-
gression. In this paper, we use the classical Echo State
Network model as the basic RC architecture, which has
a 1-dimensional input/output and no output feedback con-
nection [6]. The mathematical RC model is described by
the following formula:

x(t) = f (Wnetx(t − 1) +Win × u(t) + b) (1)
z(t) =Wout · x(t) (2)

where Wnet is a network weight (N,N) matrix, Win is an
input weight (N,1) vector, b is a bias term (fixed to 0.001 in
this study), Wout is an output weight (N,1) vector, and N is

– 447 –

2023 International Symposium on Nonlinear Theory and Its Applications

NOLTA2023, September 26-29, 2023, Catania and Online

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International.

mailto:abe.yuki.cx@ist.hokudai.ac.jp
https://orcid.org/0009-0001-8793-3203
https://orcid.org/0000-0001-6064-5917
https://orcid.org/0000-0003-2217-9382
https://orcid.org/0000-0003-2217-9382
https://orcid.org/0000-0003-1158-9810

the size of the Reservoir. Moreover, f (x) is the activation
function, t represents the discrete time, and X(t), z(t), and
u(t) are the state (N,1) vector of the Reservoir, the output
scalar, and the input scalar, respectively, at discrete time t.

3. Proposed algorithms

3.1. Nonlinear capacity expansion through high-order
polynomial functions

First, we introduce the activation function that enables
application-specific capacity in the context of RC. The acti-
vation function of RC is usually a Tanh, which can be chal-
lenging to implement on hardware. Additionally, Tanh has
a strong ratio of 1st-3rd order, indicating low-order capac-
ity based on the Taylor expansion of the function, which is
inconvenient when performing high-order capacity. There-
fore, we propose an activation function with a ”reconfig-
urable” nonlinearity. The function is defined as follows:

f (x) =
p∑

i=1

(a2i−1x2i−1) + sgn(−x)
p−1∑
i=1

(a2ix2i) (3)

a = (a1, a2 . . . a2p−1) (4)

g(x) =

 f (x) | f (x)| < 1
sgn(x) 1 ≦ | f (x)|

(5)

where g(x) is the activation function, and f (x) is the func-
tion before output limitation. In this context, p is a constant
value that defines the upper limit of the power terms, a is
a coefficient vector of size (1, 2p − 1), and ai is the weight
corresponding to each power term. In RC, the activation
function is an essential factor that directly affects the di-
mension of the system’s capacity. The activation function
can realize the nonlinear capacity of the system according
to the application by adjusting the weights that correspond
to each power term.

3.2. Main algorithms

Next, we describe the calculation flow. The RC algo-
rithm involves basic matrix operations and activation. The
matrix operations consist of the accumulation of reservoir
states multiplied by their corresponding weights. Our algo-
rithm is a single-threaded design that processes these op-
erations starting from the top row of the network weight
matrix. The calculation flow is as follows:

1. Scan the network weight matrix from the top left to
the top right.

2. Add the weighted inputs after scanning the rows.
3. Apply the activation function to the accumulated

products to obtain the output of one node.
4. Finally, write the node’s output to the RAM.

This calculation flow is repeated for as many nodes as there
are. Once all calculations are completed, the previous state
X(τ−1), which is no longer needed, is overwritten, and the
process moves on to the next discrete time.

4. Proposed architecture

4.1. Hardware demand reduction through periodic
function

Now we introduce a method to reduce the memory usage
required for the network weight matrix in RC. It is well
known that the network weight matrix in RC exhibits the
following characteristics:

• Each element of the matrix is generated from a uni-
form distribution of random numbers.
• The spectral radius of the matrix must be less than 1,

but is expected to be close to 1[7].

In previous works, the network weight matrix was stored
in memory (RAM), as is typical for RNN research. How-
ever, if the source of each element is a uniform distribu-
tion of random numbers, it should be equivalent to storing
the weights in memory and integrating a random number
generator into the system. Therefore, in this study, we pro-
pose a method to use a regenerative internal weight gen-
erator without storing the weights in memory. We employ
a Linear Feedback Shift Register (LFSR) as the source of
the regenerative internal weights. During the scanning of
the network weight matrix, the LFSR is advanced by one
step per element, and its output is decoded and used as the
value of the weight. This weight generator is implemented
as shown in Figure 2. Although this approach alone may

Figure 2: Weight generator

generate a network weight matrix with a spectral radius
exceeding 1, potentially corrupting the reservoir, we pro-
pose a solution to avoid this problem. Before implemen-
tation, we derive the spectral radius of the generated ma-
trix ρ(Wnet) and right-arithmetic bit shift the weights by
⌈ log2(ρ(Wnet))⌉ bits. This correction bit shift is applied to
the weight generator. The same mechanism is used to gen-
erate weights for the input weight vectors, in whose case
the dynamic range of the input weights is also adjusted by
the correction bit shift. With this technique, the memory
resources required for a network weight matrix with 100
nodes can be replaced by a register that is only 0.01% of
that size.

4.2. Main architecture

The architecture was designed by implementing the al-
gorithm and the hardware resource reduction method. The
overall architecture is illustrated in Figure 3, where each
colored area corresponds to a process in the calculation

– 448 –

flow. The blue area is designed for network calculation

Figure 3: Overall architecture

(flow1), the red area is designed for input addition (flow2),
the green area is designed for activation (flow3), and the
yellow area is designed for saving the output. Each area
operates when the corresponding process is executed. To
generate the network and input weights, the weight genera-
tors described in the previous section were utilized. The ac-
tivation function proposed in section 3.1 was implemented
by storing the weights for each power term in a register,
which is called the Coefficients Table.

5. Evaluation

Finally, we proceed to the evaluation of the proposed
system. The Verilog HDL implementation of the pro-
posed system was simulated using Icarus Verilog, and
the output of the reservoir was obtained. The system’s
performance was then evaluated using linear regression.
Two architectures with different activation functions were
implemented and evaluated separately. The first activa-
tion function, denoted as Function (1), used p = 5 and
a = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1), whereas the second activa-
tion function, denoted as Function (2), used p = 5 and
a = (1/256, 1/256, 1/64, 1/64, 1/16, 1/16, 1/4, 1/4, 1).
The in/out characteristics of Functions (1) and (2) are
shown in Figure 4, and their equations can be written as
follows:

f (x) =
4∑

i=1

(x2i−1 + sgn(−x) × x2i) + x9 (6)

f (x) =
4∑

i=1

(
x2i−1 + sgn(−x) × x2i

45−i) + x9 (7)

The reservoir parameters are as follows: the number of
nodes is 400 and the spectral radius is 0.735. Regarding
the input weight range, the values were adjusted based on
the activation function, with the range (-1/128,1/128) used
for Function(1), and (-1/16,1/16) used for Function(2). We
initially evaluated the proposed system’s performance us-
ing two standard benchmarks in RC, namely Memory Ca-
pacity (MC) and NARMA10-task [8, 9]. NARMA10-task’s
accuracy was measured using Normalized Root Mean
Squared Deviation (NRMSD) and Normalized Root Mean

Figure 4: In/Out characteristic of the two activation func-
tions

Squared Error (NRMSE). The benchmark results, along
with the plot of NARMA10-task and the forgetting curve
of MC, are illustrated in Figure 5. The MC results in-
dicate that the architecture with Function (1) has a supe-
rior 1st-order capacity. This can be attributed to the fact
that Function (1) places relatively more weight on the 1st-
order term when compared to the other activation func-
tion. However, in terms of measuring nonlinear capacity,
the NARMA10-task produced better results for the archi-
tecture with Function (1). We believe that the capacity may
be purged to higher-order, which cannot be measured by
the NARMA10-task. As a result, we ran a benchmark task,
the Information Processing Capacity (IPC) task [10], which
can classify and evaluate capacity in various dimensions.
In addition, we included the results of the ESN (400 nodes,
spectral radius 0.9, input weight range 0.1, and network
density 5%) as a comparator in this task. The results are
presented in Figure 6. Upon comparison of Figure 6 (a)
and (b), it is apparent that the proposed activation function
shifted the memory capacity, which was concentrated in the
second and third order, to the fourth and fifth orders. Ad-
ditionally, comparing Figure 6 (b) and (c), it is evident that
instead of significantly reducing the low-order capacity, it
augmented the capacity beyond the 6th order, which was
difficult to achieve with previous models (note: the mem-
ory capacity after the 5th order in (b) was 0). These re-
sults suggest that it is possible to design an activation func-
tion that fits the application by adjusting the coefficients
for power terms. Furthermore, we evaluated the system
from the architecture viewpoint. After implementing the
proposed system, it was synthesized using the FPGA de-
velopment tool Quartus and evaluated based on the synthe-
sis results. The evaluation results are summarized in Table
1. The number of ALMs utilized in our study is relatively

Table 1: Architecture compilation results
Total ALMs 659
Total DSP Blocks 12

Throughput per loop [1/s] 51.53
(in 50 MHz clk)

small compared to those in similar studies, which is pri-

– 449 –

Figure 5: NARMA10-task and MC Results, (a,b) were obtained with Function(1) and (c,d) with Function(2).

Figure 6: IPC task results obtained with (a) ESN(Comparator), (b) Function (1), and (c) Function (2).

marily due to our hardware resource reduction technique
[11, 12].

6. Summary

In this study, we proposed two methods to reduce hard-
ware resources: regenerative internal weights and a method
to obtain nonlinear capacity according to the application.
We demonstrated that each proposed method can be imple-
mented with significantly fewer registers than conventional
methods. Additionally, our proposed activation function
was shown to achieve higher-order capacity, which is dif-
ficult to attain using conventional models. However, the
throughput of the proposed architecture is slow because it is
a single-threaded design. Therefore, in future work, we aim
to develop a resource-efficient and real-time processable
RC architecture by applying multi-threading or pipelining
techniques.

Acknowledgments

The authors would like to sincerely thank Tokyo Elec-
tron Ltd. for their cooperation in this research.

References

[1] K. Nakajima and I. Fischer,“Reservoir Computing”,
2021, doi: 10.1007/978-981-13-1687-6.

[2] S. Kan, et al., Adv. Sci. 9, pp. 2104076, 2022, doi:
10.1002/advs.202104076.

[3] H. Kubota, et al., NOLTA, vol. E13-N, no. 2, pp. 373-
378, 2022, doi: 10.1587/nolta.13.373.

[4] M. Inubushi, et al., Sci Rep, vol. 7, pp. 10199, 2017,
doi: 10.1038/s41598-017-10257-6.

[5] G. Tanaka, et al., Neural Networks, vol. 115, pp. 100-
123, 2019, doi: 10.1016/j.neunet.2019.03.005.

[6] M. Lukosevicius, et al., Computer Science Re-
view, vol. 3, Issue 3, pp. 127-149, 2009, doi:
10.1016/j.cosrev.2009.03.005.

[7] Chris G. Langton, Physica D: Nonlinear Phenom-
ena, vol. 42, Issues 1-3, pp. 12-37, 1990, doi:
10.1016/0167-2789(90)90064-V.

[8] A. F. Atiya, et al., IEEE TNN, vol. 11, no. 3, pp. 697-
709, 2000, doi: 10.1109/72.846741.

[9] H. Jaeger, Short Term Memory in Echo State Net-
works, 2002.

[10] J. Dambre, et al., Sci Rep, vol. 2, pp. 514, 2012, doi:
10.1038/srep00514.

[11] M. L. Alomar et al., IEEE TCAS II, vol. 62,
no. 10, pp. 977-981, 2015, doi: 10.1109/TC-
SII.2015.2458071.

[12] C. Lin, et al., 2022 23rd ISQED, pp. 1-6, 2022, doi:
10.1109/ISQED54688.2022.9806247.

– 450 –

	Introduction
	Reservoir Computing
	Proposed algorithms
	Nonlinear capacity expansion through high-order polynomial functions
	Main algorithms

	Proposed architecture
	Hardware demand reduction through periodic function
	Main architecture

	Evaluation
	Summary

