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Abstract— In recent years, power-saving and compact Ar-
tificial Intelligence (AI) computers have become a neces-
sity owing to their broad applications. Stochastic Comput-
ing (SC) is an economical approach to implementing mul-
tipliers and other required components for AI and process-
ing them in parallel. However, SC-based computer archi-
tecture has issues in memory utilization. This study pro-
poses a Stochastic Memory (SM) approach that addresses
this issue using a simple bistable analog circuit. First, the
operating principle required for the SM using potential di-
agrams is explained. Next, a circuit that satisfies the op-
erating principle is explained, which can be realized using
an operational amplifier and switches and latches. Finally,
the evaluation of the proposed circuit as an SM is explained
based on simulation results. We hope that this will provide
a compact and power-efficient calculator based entirely on
SC.

1. Introduction

Artificial Intelligence (AI) has been actively applied and
researched in various fields such as speech recognition and
image recognition [1], which can be attributed to the wis-
dom and ingenuity of numerous researchers. Currently,
conventional AI requires high power consumption and long
computation time using high-performance computers and
large datasets. However, anticipating the increasing de-
mand for AI in future, power-efficient AI computing de-
vices will be required considering the strain on communi-
cation networks and the environmental impact. In contrast
to cloud-based AI, edge AI [2], which utilizes end termi-
nals for performing AI-based information processing, has
also attracted attention. Edge AI requires much smaller and
less power-consuming computers than those used in cloud
AI.
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Stochastic Computing (SC) performs the calculation
using the probability of the existence of “1” in the bit
stream [3, 4]. This makes it possible to use only one AND
gate as a multiplier, which is a compact and power-saving
feature. Therefore, research is being conducted on imple-
mentation of SC in AI, neural networks, and neural com-
putation [5–9].
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Figure 1: Multiplication in SC

However, using memory in calculations with SC necessi-
tates the use of encoding and decoding circuits, owing to
different data representations, which require a much larger
circuit area and consume more power than the SC arith-
metic circuits.
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Figure 2: SC memory utilization

In addition, parallel processing is challenging with conven-
tional memory owing to simultaneous access limitations.
Therefore, by developing a Stochastic Memory (SM) that
addresses these issues, a compact and power-efficient SC
architecture can be implemented.
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2. Stochastic Memory

2.1. The Operating principle

Ensuring proper operation of SM requires the output
form to be “0” or “1” and that the probability of outputting
“1” must be variable and storable. In this study, our pro-
posed principle satisfies these criteria using a bistable sys-
tem, noise, and noise offset.

Figure 3 shows the diagram of operating principle of
SM. When the output voltage Vout of SM is a bistable sys-
tem with a double-well potential, it is possible to output
“0” and “1” as it is stable at two wells. If the initial value of
Vout is set randomly by the noise voltage Vnoise, the system
outputs a binary value stochastically according to the rela-
tionship with the reference point Vm. Therefore, SM can be
operated in a manner that yields a random bit stream signal
for Vout , which serves as a suitable data representation for
SC.

(1) Set initial value of Vout randomly with
Vnoise.

(2) Vout is stable at “0” or “1”.

(3) Return to (1).

“0” “1”

(1)

(2)

Figure 3: Potential-based SM operating principle

When the offset of Vnoise is Vm, the range where Vnoise >
Vm and the range where Vnoise < Vm are equal, the proba-
bility p1 of outputting “1” is 0.5. However, when the off-
set is Vm + ∆V , the range where Vnoise > Vm increases, so
p1 increases from 0.5. When the offset is Vm − ∆V , the
range where Vnoise < Vm increases, so p1 decreases from
0.5. In this manner, varying p1 is possible by the noise off-
set. Probability storage can be performed by holding the
offset amount, the voltage value, in an analog memory.

2.2. The Proposed circuit

Figure 4 shows the proposed circuit diagram. SM is
composed of three main elements.

Table 1: Relation between noise offset and p1

noise offset Vm − ∆V Vm Vm + ∆V
p1 0 ← 0.5 → 1

The bistable circuit in the lower right corner is a circuit
where the output voltage Vout is a bistable system as shown
in Figure 3. Therefore, an inverter latch or an operational
amplifier (opamp) [10] can be used, which outputs a binary
value in the supply voltage range [0,VDD].

Vout =

VDD (“1”)
0 (“0”)

(1)

The negative feedback opamp in the upper left corner
functions as a voltage follower, that outputs the same volt-
age as its positive terminal. Typically, it is used as an
impedance converter, however, a floating gate (FG) MOS-
FET [10] is used as an analog memory on this positive ter-
minal. This allows the offset of Vnoise to be varied by the
floating gate layer voltage V f g, and the voltage follower
output Vv f is expressed as follows.

Vv f = Vnoise + V f g (2)

The analog switch in the upper right corner is a circuit
that turns the switch on and off by the control signal Vcon.
If Vcon is VDD, the switch turns on and connects input Vv f

and output Vout. If Vcon is 0, the switch turns off and Vv f and
Vout are open. This changes Vout by Vcon using Vnoise. Thus,
random initialization of Vout can be performed as explained
in the principle of operation.

Vout =

Vv f if Vcon = VDD,
VDD or 0 if Vcon = 0.

(3)


bistable

circuit

using FGMOSFET

Figure 4: The proposed circuit for SM
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3. Evaluations

3.1. Stochastic binary output

Figure 5 shows the simulation circuit with a posi-
tive feedback opamp. An opamp (Texas Instruments,
LMC6482) and an analog switch (Texas Instruments,
CD4066) were supplied with a supply voltage VDD = 5 V.
Vbias used a DC voltage source of 2.5 V. Vnoise used a white
noise source with RMS amplitude 500 mV and frequency
10 kHz. Vcon used a square wave with period 1 ms, on-time
0.1 ms. The positive input pin of the front opamp was made
floating by C1 = 10 pF, and the initial value of V f g was set
to any value that results in a FGMOSFET. The feedback
resistor R of the rear opamp was set to 1 kΩ.




Texas Instruments

CD4066

Texas Instruments

LMC6482

Figure 5: Simulation circuit using a positive feedback
opamp

Figure 6a shows the transient analysis results using
SPICE when V f g,init (initial value of V f g) is set to 2.5 V.
When Vcon = 5.0 V, the analog switch is turned on and
the voltage follower and positive feedback opamp are con-
nected. A random value is then input to the positive feed-
back opamp by Vnoise. Subsequently, when Vcon = 0 V,
the connection with the voltage follower is broken and Vout

stabilizes at 5 V (“1”) or 0 V (“0”). This satisfies the oper-
ating principle described in the section 2.1.

Figure 6b shows the waveform of Vout for a long-time
analysis. In this simulation, the time Vout switch is the same
as the Vcon period of 1 ms. Consequently, running transient
analysis for up to 100 ms, can yield stochastic binary out-
puts 100 times.. As Vout is a random binary sequence, we
can confirm that it is the required data representation for
SC.

3.2. Stochastic memory characteristics

The memory characteristics of the probability p1 of Vout

outputting “1” are evaluated. Calculate p1 from Vout wave-
form data for 100 ms for each V f g,init. Here, in addition to
the circuit in Figure 5, a circuit with a CMOS inverter latch
in Figure 7 was also simulated. The operation of this circuit
is the same as a positive feedback opamp, where the con-
nection between the voltage follower and latch is controlled
by a switch, which enables Vout to operate as a stochastic

(a) input noise and output signals

(b) stochastic binary output

Figure 6: Simulation results (V f g,init = 2.5 V)

binary output.

p1 =
output count of “1”

100
(4)
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LMC6482 Texas Instruments
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Figure 7: Simulation circuit using an inverter latch

Figure 8 shows the output probability characteristics.
Here, V f g,init is varied in [0,VDD] by 0.1 V. In addition,
each point is calculated from the equation 4, and the sig-
moid function fitted based on those results is shown as a
line. In addition, each point is calculated from the equation
4, and fitted with the equation 5, which is represented by a
solid line.

p1 =
1

1 + e−(aV f g,init+b) (5)
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When a positive feedback opamp is used in the bistable
circuit, p1 changes along the same direction as the increase
or decrease of V f g,init. The coefficients in the fitting are
a = 4.3 and b = −10.6. At this time, the range of change
in V f g,init is approximately 2 V. As this is the peak-to-peak
value range of Vnoise, it is possible to adjust the width of
V f g,init variation based on the noise intensity.

When a latch is used in the bistable circuit, p1 changes
in the opposite direction against the increase or decrease of
V f g,init. The coefficients in the fitting are a = −4.5 and b =
9.6. The Vout in Figure 7 is an inverter output, therefore,
the change characteristic is opposite to that of a positive
feedback opamp. The above evaluation confirmed that SM
is possible by using the FGMOSFET as analog memory in
the proposed circuit.

Assuming that the V f g rewriting circuit with 8-bit pre-
cision is used, the minimum change in V f g will be about
20 mV. Therefore, as p1 is divided by about 100, SM will
have a 7-bit precision.

Figure 8: Stochastic memory characteristics in each
bistable circuit

4. Conclusion

For efficient memory utilization of SC, we proposed a
SM that outputs a random bit stream while storing the out-
put probability. First, based on a double-well potential, a
stochastic binary output was represented by noise initial-
ization. Next, the output probability was varied by a noise
offset, and the SM was represented by holding the offset
value in an analog memory. Finally, the circuit based on
these operating principles was evaluated using SPICE. The
results showed that a simple analog circuit can be used
to implement SM with an adequate range of variation, al-
though dependent on the input noise intensity.
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