
978-1-4799-2079-2/13/$31.00 c©2013 IEEE

A Restricted Dynamically Reconfigurable
Architecture for Low Power Processors

Takeshi Hirao Dahoo Kim Itaru Hida Tetsuya Asai Masato Motomura

Hokkaido University, Graduate School of Information Science and Technology,
Sapporo, Hokkaido, 060-0814, Japan

Abstract—Reconfigurable processors have widely attracted
attention as an approach to realize high-performance and highly
energy-efficient processors that map a target program’s hot path
to a reconfigurable datapath. In this paper, we propose a Control-
Flow Driven Data-Flow Switching (CDDS) variable datapath
architecture for embedded applications that demand extremely
low power consumption in a wide range of uses. This architecture
is characterized by following two features: (1) achieving both
flexibility and low energy consumption by limiting the scope of the
dynamic reconfiguration, (2) realizing smooth migration from the
existing architecture by mapping the existing instruction sequence
to the datapath. Preliminary evaluation on small programs have
revealed that the CDDS accelerator achieves approximately 3 to 6
times the performance/power improvements, compared to a base
processor.

I. INTRODUCTION
In recent years, low power consumption has been one of

the main criteria governing the design of various embedded
processors, such as those for mobile devices, robotics, sensor
networks, etc. At the same time, high-end processors have
been struggling to improve their performance under severe
total power budget constraints (i.e., ”power wall” problem).
In essence, improving performance/power is a central theme
in general-purpose processor architecture design today.

Multicore processors try to improve performance through
parallel processing, i.e., by increasing the number of pro-
cessor cores. Since these multicore processors still keeps an
underlying single processor architecture essentially unchanged,
however, the performance/power is not expected to improve
significantly. It is fairly well-known, in general purpose pro-
cessor architecture, that ALU consumes around 10% of total
power consumption, rest being consumed in fetching and
decoding instructions, accessing register files, pipelining, etc.
(see [1] for example.) That is, if non-ALU power consumption
can be reduced with some intelligent architectural innovations,
processors can drastically reduce their power consumption.
As such, there have been various studies trying to improve
performance/power of such general-purpose processors by
integrating a customized accelerator which process hot path
portions of applications.

Configurable processors use a fully-customized hardware
accelerator, which is implemented (configured) prior to the
fabrication of processor chips. Though a hardware accelerator
can significantly improve the performance/power over that of
a conventional processor, it is no more than a limited solution
specific to target applications.

Reconfigurable processors address this concern by intro-
ducing reconfigurable accelerator which can be reprogrammed
(reconfigured) before execution of different applications. Here,

reconfigurable accelerator is generally composed of several
memory elements, programmable interconnects and an array
of processing elements (PEs). A key issue in such a recon-
figurable accelerator design is to find a reasonable balance,
prior to the fabrication time, between general versatility and
performance/power improvement.

Intrinsic limitation of such reconfigurable processors is that
they cannot accommodate a task that exceeds the hardware
capacity of the reconfigurable datapath. Dynamically recon-
figurable processors have been proposed to overcome this
limitation. In this architecture, a task that exceeds hardware
capacity of the reconfigurable datapath is first (at compile
time) divided into multiple hardware contexts. These hardware
contexts are then executed in time-division manner at execu-
tion time (i.e., dynamic reconfiguration). Though dynamically
reconfigurable processors can enhance general versatility in
comparison to above ”static” reconfigurable processors, po-
tential drawbacks would be performance/power degradation.
This is because frequent dynamic reconfiguration should cause
additional power consumption which is not directly associated
with the execution of a given task. A key issue here is, again,
trade-off between general versatility and performance/power
improvements.

This paper presents a new reconfigurable accelerator ar-
chitecture targeting embedded processors. Since embedded
processors are used in both control-intensive and data-intensive
application domains, we need to pay careful attention to
keep general versatility of the architecture. Needless to say,
extremely low power and relatively high performance, i.e.,
very good performance/power, is also a mandatory require-
ment for embedded processors. We named our architecture
a Control-flow Driven Data-flow Switching (CDDS) variable
datapath architecture: by limiting the dynamic reconfiguration
for accommodating control-intensive tasks as minimum as
possible, the CDDS architecture tries to achieve both versatility
and performance/power improvement required for embedded
processors.

Rest of the paper is organized as follows. Section 2
reviews recent related works in embedded processor domain.
Section 3 introduces the CDDS architecture concept. Section
4 then describes the details of the CDDS processor, which
integrates CDDS accelerator into a conventional processor.
Section 5 discusses preliminary evaluation results on some
small applications. Section 6 summarizes the paper.

II. RELATED WORK
Green Droid [2] is a configurable processor for mobile

devices. It includes hardware accelerators for a several hot
paths existent in the Android OS. It was reported that it reduces

the energy consumption by 91% compared to a baseline CPU.
Though the Android OS is one of major platforms for mobile
devices, this solution suffers from the limitation mentioned in
the previous section, namely, being difficult to deploy same
approach toward variety of embedded applications.

ADRES [3] is a dynamically reconfigurable processor
consisting of a VLIW processor and a reconfigurable matrix
composed of function units. The performance could be im-
proved by simultaneously using the reconfigurable hardware
accelerator and the VLIW processor to execute the loop portion
of the hot path. Since it relies on VLIW processor for control-
flow handling, a program with multiple branches can not be
processed in the reconfigurable matrix.

CMA [4] is a recent example of reconfigurable processors
for low power applications. This architecture was proposed
based on the observation regarding MuCCRA [5] and DRP [6],
which are dynamically reconfigurable architectures, that they
require additional power for dynamic reconfigurations: CMA
PE array is composed of combinatorial circuits without regis-
ters, and is not dynamically reconfigured during execution, for
saving power. In addition, PEs are combined using switches
without passing through registers for saving additional power.
Though this architecture provides an interesting design point
for utilizing a reconfigurable accelerator for low-power proces-
sors, it looses general versatility quite a deal. The PE array can
execute only a task that maps into a combinational circuit. If
it needs to keep data in registers, such as in a loop execution,
it has to use an external controller. In addition, since it cannot
handle branch operations, it can process only a straight-line
and short task. In essence, this architecture tries to achieve
as much as high performance/power at the price of severely
limited versatility.

In comparison to the studies described above, the CDDS
architecture tries to find another and better balancing point
between versatility and performance/power in embedded pro-
cessing environment. It features dynamic reconfiguration at
runtime for providing the flexibility required to handle control
branches, which is inevitable for coping with reasonable range
of embedded applications. On the other hand, it restricts the
scope of the dynamic reconfiguration as much as possible
for improving performance/power. When compared with con-
ventional dynamically reconfigurable processors, since only
a limited portion is actually reconfigured at runtime, addi-
tional power consumption due to reconfiguration can become
dramatically small. When compared to ”static” reconfigurable
architectures such as CMA, on the other hand, it can execute
even tasks consisting of a complex control flow.

III. ARCHITECTURE CONCEPT
Difficulties in mapping a control-intensive program to a

reconfigurable accelerator lies in mapping complicated con-
trol/data flow graph (CDFG) to a datapath (an array of PEs and
memories). Thus, first of all, it is worthwhile looking into the
nature of CDFG. When a program is represented in a CDFG,
a set of data flows to be actually executed is selected at a
branching point in the control flow. Here, one can notice that
the data flow actually affected at this point is the connection
between the executed data flow and the selected data flow.

Often cases, dynamically reconfigurable architectures use
their runtime reconfiguration as means to change hardware
configurations at such a branching point [6]. This way, dat-
apath structure (especially inter PE connections) can be kept

(a) Control Data Flow Graph

BB2

BB3

 BB1

BB2

BB3

BB1

(b) branch
 taken

BB2

BB3

BB1

(c) branch
 not taken

change
not taken

taken

Fig. 1. Key observation: only inter-BB data flow need to be changed
according to a branch in control flow.

PE

sw

PE

sw

BB1

Config
Static
Part

Context

Config
Dynamic
Part

PE PE PE

PE PE

sw

PE PE PE

BB3

BB2

Static Part

BB2

BB3

 BB1

1

3

2

Contexts

1

2

3

Dynamic
Part

Reconfigurable Datapath

1 2 3

State Transition Function

Fig. 2. The CDDS architecture concept: dividing a hot path into static part
and dynamic part.

simple and shaped since complex control flow is handled by
context switching mechanism built external to the datapath.
Observation given above, however, seems to tell us it may be
sufficient to change only the hardware configuration related to
the data flow that is affected at the branching point, not the
whole hardware configuration.

A. Control-Flow Driven Data-Flow Switching (CDDS)
This insight leads us to derive (design) a new architecture,

where a reconfigurable datapath is divided into a static part
and a dynamic part. The static part runs only combinatorially,
depending on the pre-determined data dependency between
instructions. Only the dynamic part is reconfigured at run
time when a control flow branches are encountered. The name
CDDS came from its intrinsic characteristic, where only the
minimum portion of data flow switches under the supervision
of a control flow. Since the scope of dynamic reconfiguration
is quite limited, there is a good chance for this architecture to
achieve both versatility and performance/power improvement
fairly well.

Fig. 1 shows an example CDFG for illustration purpose.
This program first runs from Basic Block 1 (BB1) to BB2.
Since no branch exists in this period, data flows in BBs are
not switched at runtime. Then depending on the result of the
branch, data flows between BBs are switched. For example,
when a branch is taken, the data flow from BB2 to BB2 is
needed as shown in Fig. 1(b). On the other hand, if the branch
is not taken, the data flow from BB2 to BB3 is required as
shown in Fig. 1(c).

According to the concept explained above, this program
is then divided and mapped into two parts in the CDDS

architecture: a static part and a dynamic part as shown in Fig.
2. All the intra-BB data flows are extracted and configured into
the static part. Other inter-BB data flows are also extracted and
configured into multiple contexts for the dynamic part. The
dynamic part is reconfigured according to a context during
execution of the task, and provides data to the BBs mapped
on the static part according to the selected control flow. For
example, context 2 and context 3 provides data connection
from BB2 to BB2 and BB2 to BB3, respectively (see Figs.
1 and 2). Context switch is controlled by a state transition
function generated from the CDFG.

Here, single branch generates two contexts (one for taken
and the other for not taken). Since there is always an initial
context, total number of contexts for a given task is 2n+1,
where n is the number of branches in the task. This architecture
can handle complex control sequence with branches as long
as the maximum number of contexts is not exceeded. It is
also possible to translate forward branches to a conditional
execution sequence to reduce the number of required contexts
(see next section).

Since there is no arithmetic unit in the dynamic part, the
context does not include operational information. Therefore,
the configuration bits of a context can be drastically reduced
compared to those in conventional dynamically reconfigurable
processors.

B. Configuration information generation
Since the CDDS architecture is geared toward integra-

tion within a conventional embedded processors, we need to
consider portability of existing codes seriously. Unlike those
previous works, which require writing a new program or
modifying an existing program to generate the configuration
information, the CDDS architecture can take over the program
assets by generating configuration information based on the
existing binary file. Additional advantage of using the binary
file is that it requires only a light-weight design tool in
generating configuration information.

For this purpose, PEs in Fig. 2 will be designed to have
basically an identical ALU to the one in a main processor
to be accelerated. Fig. 3 explains configuration information
generation flow. First, a binary code generated by a compiler
is disassembled, and then hot paths are extracted from the
assembly code and the configuration information for both the
static and dynamic part is generated out of it. The reconfig-
urable accelerator configuration (RAC) instruction is placed at
the starting segment of the program, and the reconfigurable
accelerator run (RAR) instruction is placed at the position
of the hot path. When the main processor decodes RAC,
the CDDS accelerator reads the configuration information,
and maps it to the reconfigurable accelerator. Next, when
the main processor decode RAR, the CDDS accelerator starts
to run. Because the reconfigurable accelerator is configured
when the processor starts up, no overhead is required for the
configuration at execution time.

IV. THE CDDS PROCESSOR
Fig. 4 shows a proposed CDDS processor block diagram,

which is composed of a main processor and the CDDS
accelerator. The main processor is a slightly extended standard
embedded processor. The CDDS accelerator is composed of
a reconfigurable datapath with main and sub switch array, a
context controller that changes contexts, and a configuration
loader that reads the configuration information from instruction

010・・・

・・・・

binary code

disassemble

compile

static part
conf.

executable code

Contexts

add・・・

・・・・

assembly code

hot path

RAC
add・・・
・・・・
RAR
・・・・

Main
 processor

CDDS acc.
conf.

Fig. 3. Configuration information generation flow.

Main
Switch
Array

PE

sw

PE

sw

PE PE PE

PE PE

sw

PE PE PE

PE

sw

PE

sw

PE PE PE

Instruction
Selector

Instruction
Decorder

Configuration
Loader

Reconfigurable
Datapath

Execution
Unit

RF

Data
Selector

Configue

Data
 Memory

Instruction
Memory

RAC

Contexts
Controller

RAR

Run

Instruction
 Fetch

Main

Processor

Data Control Static PartDynamic Part

CDDS
Accelerator

Sub Switch Array

Fig. 4. The CDDS processor block diagram.

memory common to the main processor. The main switch array
is the dynamic part mentioned in Section 3.1, and the sub
switch array is the static part, as illustrated in Fig. 4.

When the main processor decodes RAC instruction, the
configuration loader reads the configuration information, and
configures the reconfigurable datapath. When the main pro-
cessor decodes RAR instruction, the context controller set
an initial context, and the CDDS accelerator starts to run.
The CDDS accelerator processes hot paths in a program, and
the main processor runs the rest of the program (the main
processor is halted while the CDDS accelerator is running).
Inputs and outputs of a task on the CDDS accelerator is read
from (write into) the main processor via the register file (RF). It
also read/write data from/to data memory through data selector.

A. Main switch array
Fig. 5 shows the main switch array, which provides re-

configurable connections between BBs configured in the sub
switch array, the RF, and the temporary registers. It transfers
data from the RF to the BBs configured in the sub switch array,
and it also forwards the calculated results from a BB to other
BBs. When the execution of a mapped task is completed, the
CDDS accelerator returns the control to the main processor,
and the calculated results are stored in the RF through the main
switch array. When succeeding contexts need results calculated
in previous contexts, those results should be temporarily stored
somewhere upon a context switch. Thus, the main switch
array is equipped with distributed temporary registers for this
purpose (this is akin to register renaming in conventional
processor architectures).

B. Sub switch array
As shown in Fig. 6, instruction sequence in each BB is

mapped onto the sub switch array, where an instruction is
mapped on a PE and data dependencies among instructions
are translated into connections between corresponding PEs.

Fig. 7 shows the structure of sub switch array. The number
of PEs in a stage defines the maximum number of instructions

Sub Switch

Sub Switch

Sub Switch

Sub Switch

From Register File

To Register File

Sub Switch

Sub Switch

・

・

Data

Input Output

Temp.
regs

Temp.
regs

Fig. 5. Main switch array: configuring the connections between BBs
configured in the sub switch array.

BB'

BB'

+

+

+

+

Data Control

 PE PE PE PE PE

PE PE PE PE PE

Main
Switch
Array

 PE PE PE PE PE

・

・

・

BB

BB

Fig. 6. Mapping BBs to the sub switch array.

that can be executed in parallel. In general, the instruction
level parallelism of applications including many branches is
known to be around five [7]; therefore, we set 5 PEs in a
stage in this study. On the other hand, since instructions with
data dependencies need to be mapped in different stages, the
number of stages in the sub switch array set the maximum
critical instruction path length of its executable task.

Since it is also expected that approximately one in five
instructions would be a branch (BRA) or load(LD)/store(ST)
instruction [7], we set left-most PE to include branch unit, and
right-most PE to includeLD/ST unit, in addition to ALUs (the
middle three PEs contains only ALUs).

If a PE in the stage requires the output of the PE in the
previous stage, the input is connected to the output of the PE in
the previous stage through the switches so that instructions can
be executed in a chained manner. The inputs of each PE can
be selected either data from the main switch array or output

!"# !"# !"# !"# !"#

$%&'()*&+,-

./0123%34
3/5&6+/36

!"#
78!

!"#
"9:).

!"# !"# !"# !"# !"#
!"#
"9:).

!"#
78!

$%&'()*&+,-

./0123%34
3/5&6+/36

;
;

)+%5/

<=(

Data

Input

Control

Output

Fig. 7. Sub switch array: configuring the connections among PEs, and
implements the data flows within BBs.

of the previous stage. LD/ST unit is an exception, in that it
can get an output from the same stage. This is because it is
highly likely that an ALU instructions mapped in the same
stage generates a memory address for the LD/ST operation.
Further, to avoid conflicts of multiple LD/ST operations, the
LD/ST unit is selected sequentially, and only the selected unit
can access the memory. The data from the data memory is
stored in the external registers before switching contexts. The
branch units output the conditions for context switching and
conditional execution.

The sub switch array is provided with a mechanism to
handle conditionally executions. A program generally includes
multiple short forward branch instructions, and using contexts
for these branches adds unnecessary overhead. By translating
short forward branches into conditional executions in the sub
switch array, the number of contexts can be reduced. For this
purpose, the sub switch array is able to send branch unit’s
conditional results to subsequent stages. Also, selectors were
added to the outputs of the PEs at each stage. Depending on the
condition result, the PE could pass the output of the previous
stage to the next stage, or it could pass its own output.

The PEs are linked as a chain based on dependencies
among instructions. Because the maximum length of a chain
for each context sets the execution time of the context, the
context’s execution time becomes variable. Therefore, an ex-
ecution cycle count for a context, measured in fixed clock
frequency, is different from a context to the other.

C. Context and state transition controllers
Fig. 8 shows a context controller, which controls the con-

figuration of the main switch array. When the main processor
decodes a RAC instruction, the configuration loader reads the
configuration information from the instruction memory and
stores it in the context memory. When the main processor
decodes a RAR instruction, it stores the initial state specified
by the instruction in the STATE register (Fig. 8). Then, the
context is switched, and the datapath of the main switch
array is reconfigured. When the datapath is configured, it
forwards the RF data to the sub switch array, and the CDDS
accelerator starts the computations. The execution times for
each context is assigned to the context as the number of

・
・
・

・
・
・

・
・
・・・・

Instruction
Memory

Configuration delay
return
addr

Configuration delay
return
addr

・

・

1 2 ・・・ N_conf

STATE

clk

counter
Res

= next_state

return addr

final_state

end

Configration

Context1

Context2

STC

condition Configration Loader

Dynamic Part

STC: State transition controler

Context Memory

Fig. 8. Context controller: controlling the configuration of the main switch
array.

 STC_configureSTATE

D
e
c
o
rd

e
r

STC_configure_addr

STC_configure STC_configure_data

 cond1
 cond2

 condN

・
・

cond_sel

 condition

next_state

Fig. 9. State transition controller: determining the next state based on the
current state which is stored in STATE register, and the conditional result.

cycles, and the accelerator runs for that length of time. During
the execution time, the state transition controller (shown in
Fig. 9, also STC in Fig. 8) determines the next state based
on the current state which is stored in STATE register, and
based on the condition result. The state transition function that
determines the transition destination is stored in the memory.
The conditional result is selected according to the context
(cond sel in Fig. 9) from outputs of the branch units of all
stages. The context controller has the return addresses of the
main processor, and stores this address in the program counter
in the end of the final state.

V. PRELIMINARY EVALUATION
We have designed a small test CDDS accelerator, con-

ducted its performance and power estimation, then compared
it with a main processor. First of all, Lattice Mico32 (LM32)
[8] from Lattice Semiconductor, which employs a typical
32bit RISC architecture, is chosen for the main processor,
because its RTL model is available as well as its capability
for instruction extension. As for the CDDS accelerator, we
set up 10 stages and 9 contexts. As explained in Section
4.B, it means this specific CDDS accelerator can handle a
task up to 50 instructions, 10-instructions-long critical path,
and 4 branches. Each stage of the main switch array has 5
temporal registers, and can forward 4 data to the sub switch
array. Conditional execution was not implemented in this test
design for simplicity.

We have conducted RTL design of the CDDS acceler-
ator as well as LM32 (only minor modification), and also
conducted their physical design on TSMC 0.18um CMOS

r6 r7 r8 r9

sli sli lw

andi sub lbu

・

・

r6 r8

add

 r1

lbu

r1

 r1

r4

r3

r1

r1

mv

r3 r3

r2 r3

r1r4 r2, r3

r5r4 r2

r5r4 r4 r2

add r1,r8,r6

lbu r3,(r1+1)

lw r4,(r1+0)

lbu r5,(r1+2)

sli r2,r3,8

sli r3,r3,4

andi r4,r4,0xff

sub r2,r2,r3

sli r1,r4,4

sli r3,r4,7

sri r2,r2,8

muli r5,r5,200

　　・

　　・

　　・

Sepia Filter

sli sli sri muli

Contexts

Sub Switch ArrayMain Switch Array

Fig. 10. Sepia filter mapped on the CDDS accelerator for evaluation.

process library using industry standard tools (see Table I).
Expected operational clock frequency from post-layout timing
analysis is 100MHz for both of them (see also Table I). As
for instruction and data memories, we have set their size as
32-bit×4k-word (16KB) each, which is within a typical range
for embedded processors. Since it is rather difficult to include
memory access directly into post-layout power simulation, we
have added memory access power consumption afterwords,
which is calculated as 0.475mW/MHz (obtained from [9] for
this size of memory) multiplied by the memory access average
frequency obtained from the RTL simulation.

TABLE I. TOOLS AND DESIGN RESULTS

Logic Synthesis Synopsys Design Compiler
Layout/Post-layout Timing Analysis Cadence Encounter
Post-layout Logic Simulation Mentor Graphics ModelSim
Post-layout Power Estimation Synopsys Design Compiler

Architecture Gate count Clock frequency [MHz]
CDDS Accelerator 561,279 100

LM32 30,459 100

A. Benchmark programs
As for benchmark programs, we have chosen three tiny

codes, sepia filter, crc32, and sbox (a key function in AES),
often used for preliminary evaluation of a new reconfigurable
architecture. Binary codes for LM32 is compiled from re-
spective C source codes by its software design environment.
Configuration information for the CDDS accelerator is gener-
ated successfully, via manual translation (CDDS tool set is not
available yet), from the disassembled LM32 binary codes.

For example, Fig. 10 shows how sepia filter is mapped
on the CDDS accelerator. Instructions in an original code
(shown left) are assigned to PEs in the sub switch array.
Because the sepia filter contains one branch instruction, the
number of contexts is 3. Hatched PEs are the PEs mapped
with no instructions. Table II summarizes basic characteristics
of these benchmarks. Here PE utilization, which is calculated
as [the number of used PEs/the number of used stages/5], is
ranged from 36% to 50%: which essentially says 1.8 to 2.5
instructions are executed in parallel (in a same stage) in the
CDDS accelerator in this evaluation.

TABLE II. MAPPING RESULTS ON THE CDDS ACCELERATOR.

Application # of inst. # of branches PE utilization [%] # of contexts
sepia filter 22 1 44 3

crc32 18 2 36 5
sbox 25 2 50 5

B. Power consumption
Fig. 11 shows the average power consumption of the CDDS

accelerator and LM32 when running each of the benchmark
applications. In total, the CDDS accelerator consumes only
1/3 to 1/5 power compared to LM32. The main reason is in
instruction memory, to which LM32 must access every cycle,
while the CDDS accelerator does not at all during execution
time. The difference in logic power consumption is relatively
small. As a side note, both of the designs have been fully clock
gated to conduct fair comparison.

Fig. 12 shows the LM32 and the CDDS accelerator power
breakdown in circuit types for sepia filter for example (crc32
and sbox power breakdowns are quite similar to this one).
In order to get more insights into the nature of logic power
consumption, instruction/data memory accesses are excluded
in this figure. In LM32 (a), the register portion, including RF,
pipeine registers, etc., accounts for two times larger proportion
than the combinational portion. In CDDS accelerator (b), on
the other hand, the combinational portion accounted for 3/4 of
the total power.

Fig. 13(a) and 13(b) show another breakdown of logic
power consumption in functional blocks (again, excluding
memory accesses) for the same application. LM32 power
breakdown shows a typical characteristics of a general purpose
processor. The CDDS accelerator consumes more than 70%
of its power in its static part, while 6% is consumed in
dynamic part. The clear difference between LM32 and the
CDDS accelerator shown in Fig. 12 and Fig. 13 reveals that
the CDDS architecture concept, i.e., executing a task statically
(without using registers) as much as possible, is working quite
successfully.

On the other hand, the CDDS accelerator power consump-
tion during the configuration time for sepia filter is 59.5mW
(47.5mW for instruction memory and 12mW for memory).
Though it is relatively large, approximately twice the power of
execution period, it is not a problem because the configuration
is executed only once at the processor startup. For clarity, Fig.
13(c) additionally shows the power breakdown in functional
blocks when this application is being configured onto the
CDDS accelerator, where the percentage portion related to the
configuration (configuration loader) is as large as 41%.

C. Performance and energy consumption
Fig. 14 shows performance improvement exhibited by the

CDDS accelerator over LM32 (red line). It ranges from 1.4 to
2.2 depending on applications. Performance improvement in
crc32 is relatively low since its instruction sequence is more
heavily data dependent compared to the others (it also appeared
in poorer PE utilization in Table II).

Needless to say, relative energy consumption is equal to
relative power/performance, which is shown in green line in the
same figure. The energy consumption of the CDDS accelerator
is approximately 1/3 to 1/6 of that of LM32, showing that the
CDDS accelerator has achieved the better performance/power
in comparison with the main processor, as we have targeted.

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

LM32	
 CDDS	
 Acc.	
 LM32	
 CDDS	
 Acc.	
 LM32	
 CDDS	
 Acc.	

sepia	
 filter	
 crc32	
 sbox	

Po
w
er
	
 	
 c
on

su
m
p-

on
	
 [m

W
]	
 Data	
 memory	

Inst.	
 memory	

Logic	

Fig. 11. Estimated power consumption for each application.

7%	

62%	

1%	

30%	

clock_network	
 register	
 sequen8al	
 combina8onal	

7%	

62%	
 1%	

30%	

16%	

12%	

0%	

72%	

(a)	
 LM32	
 (b)	
 CDDS	
 Accelarator	

Fig. 12. Breakdown of power consumption for sepia filter.

6%	

73%	

4%	

1%	
 1%	

15%	

dynamic	
 part	
 sta4c	
 part	
 RF	
 conf.	
 loader	
 stc	
 others	

RF	

22%	

ALU	

19%	

LD/ST	

13%	

IF	

12%	

others	

34%	

6%	

73%	

4%	

1%	

1%	

15%	

5%	

8%	

9%	

41%	

0%	

37%	

(a)	
 LM32	
 (b)	
 CDDS	
 accelerator	
 (execu4on)	
 (b)	
 CDDS	
 acceralerator	
 (configura4on)	

Fig. 13. Power consumption of each module for sepia filter. (a) LM32, (b)
The CDDS accelerator in execution phase, and (c) The CDDS accelerator in
configuration phase.

0	

0.05	

0.1	

0.15	

0.2	

0.25	

0.3	

0.35	

0.4	

0.45	

0.5	

0	

0.5	

1	

1.5	

2	

2.5	

sepia	
 filter	
 crc32	
 sbox	

Re
la
%v

e	

en

er
gy
	
 (▲

)	

Sp
ee
du

p	

(■

)	

Fig. 14. Relative speedup and energy comparison between the CDDS
accelerator and LM32.

VI. CONCLUSION AND FUTURE WORK
This paper has focused on an architectural study of a re-

configurable accelerator for low-power embedded processors,
where maintaining versatility over applications and achieving
better performance/power are the two major issues to be

addressed. We have claimed that exploiting dynamic reconfigu-
ration in a restricted manner would be one way to successfully
achieve both of them. CDDS architecture, which has been
derived from this claim, is characterized by a reconfigurable
datapath composed of static part and dynamic part, only the
latter being dynamically reconfigured during execution time.

Our preliminary evaluation on a test CDDS accelerator
design has shown promising results: it has shown approxi-
mately 3 to 6 times performance/power improvements on three
benchmark programs. Though these programs are tiny ones,
they include a few branches that can test versatility of this
proposed architecture to some extent.

The proposed architecture is still in preliminary stage in
various aspects: e.g., main/sub switch array structure design
space need to be explored more systematically, power con-
sumption need to be investigated into more detail to see po-
tential in-efficiencies, testing on more realistic applications to
get firm results, lacking a tool to generate CDDS configuration,
etc. Our continued efforts on these and other aspects will be
published elsewhere in future.

REFERENCES
[1] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solo-

matnikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis,
and Mark Horowitz.: Understanding sources of inefficiency in general-
purpose chips, SIGARCH Comput. Archit. News, 38(3):37–47, June 2010.

[2] S. Swanson and M.B. Taylor.: Greendroid: Exploring the next evolution
in smartphone application processors, Communications Magazine, IEEE,
49(4):112 –119, april 2011.

[3] Francisco-Javier Veredas, Michael Scheppler, Will Moffat, and Bingfeng
Mei.: Custom implementation of the coarse-grained reconfigurable adres
architecture for multimedia purposes, In FPL, pages 106–111, 2005.

[4] N. Ozaki, Y. Yasuda, Y. Saito, D. Ikebuchi, M. Kimura, H. Amano,
H. Nakamura, K. Usami, M. Namiki, and M. Kondo.: Cool mega-arrays:
Ultralow-power reconfigurable accelerator chips, Micro, IEEE, 31(6):6
–18, nov.-dec. 2011.

[5] Yoshiki Saito, Toru Sano, Masaru Kato, Vasutan Tunbunheng, Yoshihiro
Yasuda, and Hideharu Amano.: A real chip evaluation of muccra-3: A low
power dycamically reconfigurable processor array, In ERSA’09, pages
283–286, 2009.

[6] Masato Motomura.: A dynamically reconfigurable processor architecture,
Microprocessor Forum, Oct. 2002, 2002.

[7] David W. Wall.: Limits of instruction-level parallelism, SIGOPS Oper.
Syst. Rev., 25(Special Issue):176–188, April. 1991.

[8] LatticeMico32 development tools,
http://www.latticesemi.co.jp/products/designsoftware/
micodevelopmenttools/index.cfm.

[9] 3.1 On-Chip SRAM
http://www.csd.uoc.gr/∼hy534/03a/s31 ram bl.htm.

