
FPGA-based Design for Motion-Vector Estimation exploiting High-Speed imaging
and its Application to Machine Learning

Masafumi Mori1, Toshiyuki Itou1 , Masayuki Ikebe1, Tetsuya Asai1,
Tadahiro Kuroda2, and Masato Motomura1

1Graduate School of IST, Hokkaido University
Kita 14, Nishi 9, Kita–ku, Sapporo 060–0814, Japan

E-mail: mori@lalsie.ist.hokudai.ac.jp

2Faculty of Science and Technology, Keio University
Hiyoshi 3–14–1, Kohoku-ku, Yokohama,

Kanagawa 223–8522, Japan

Abstract

In this study, we propose an architecture for estimating mo-
tion vectors by searching one neighbor pixel in high-speed
images and a machine learning algorithm that uses the esti-
mated motion vectors. In high-speed imaging, pixel motions
between frames are considerably small. Our architecture es-
timates motion vectors by assuming that the pixels move less
than one pixel between frames. We verified if our method
could classify images into two classes, i.e., danger (some-
thing is approaching) or safety (others), by employing a sim-
ple perceptron after extracting the features of the estimated
motion vectors using a method based on Poggio’s HMAX
model. We used the target images captured by an in-vehicle
camera for learning and verified if another set of images could
be classified using our method. We confirmed that the pro-
posed architecture can estimate motion vectors using a small
number of operations and perform classification based on ma-
chine learning.

1. Introduction

Recently, image processors that can be installed in portable
terminals such as smartphones are being developed actively
[1]. Traditionally, architectures used for complex processing
connected multiple processors or memory components on a
printed circuit board. However, this method lead to a signif-
icant increase in the the size of the board, and the data rate
between devices was considerably slow [2]. Thus, a method
was devised that integrated some chips and connected them
in three dimensions [3]. Using this method, the chip area re-
duced and the data rate between chips improved. We expect
the data rate will considerably be increased in the near future,
which opens a new field of modern semiconductor applica-
tions. For example, we may assume that images captured by
an image sensor at 1000 fps will directly be transmitted to an
image processor. In this case, the inter-frame differences be-
come smaller as the video frame rate increases, which means
that the search ranges used for motion-vector estimation by

block-matching decreases. Therefore, motion vectors can be
estimated using a small number of calculations. In the present
study, we aimed to apply machine learning to motion vectors.
Therefore, we devised a method that allows motion vector es-
timation using our proposed architecture and its use for ma-
chine learning.

In this study, we developed an architecture for estimat-
ing motion vectors based on a small number of calculations.
Our architecture estimates motion vectors by assuming that
a pixel at specific coordinates moves less than one pixel be-
tween frames. Further, we propose a method that classifies
images into two classes, i.e., danger (an object is approach-
ing) or safety (others), using a simple perceptron, after ex-
tracting the features of the motion vectors estimated by the
architecture using a method based on Poggio’s HMAX model
[4]. We verified if machine learning was possible using our
feature extraction method because a simple perceptron can
only classify linearly separable problems. Therefore, we used
target images captured with a high-speed camera or an in-
vehicle camera for learning, and then, we verified whether the
same or similar images could be classified with our proposed
method.

2. Motion Vector Estimation for High-speed Imaging

2.1 Proposed Algorithm

A block matching method is available as an algorithm for
detecting motions in moving images [5]. This block match-
ing method requires many calculations and there is a problem
with its time requirements. To reduce the processing time
of the block matching method, it is necessary to reduce the
search range. However, the block matching method has low
accuracy if the search range is reduced in advance. In high-
speed imaging, the motion of a pixel at specific coordinates
becomes considerably small between frames. In the present
study, therefore, we estimate the motion vectors by assuming
that the pixels move less than one pixel between frames. We

- 145 -

2014 RISP International Workshop on Nonlinear Circuits,
Communications and Signal Processing
NCSP'14, Honolulu, Hawaii, USA. February 28 - March 3, 2014

input
image

write
cost calculation

compare cost

sum of absolute
defference (SAD)

(b) Proposed algorithm for motion-vector estimation

time

motion-vectors

match

(a) Image division for block matching

direction : west
motion-vectorimage (F

t
)

F
t+1

F
t

image (F
t+1
)

Figure 1: Process flow of proposed algorithm for motion vector estimation

input
image

serial input

(b) caluculation of costSE

(a)

target
block

a pixel of template block

search block

search range

timing of read
template block

Figure 2: Sequential cost-calculation timings

set the nearest neighbor pixel in the target block as the search
range and then estimate the motion vector.

Figure 1(a) shows how the search range set is divided for
images. We define Ft and Ft+1 as two consecutive frames
over time. The search range is 5 × 5 pixels. We divide
the images into search ranges and motion vector estimation
is performed for each search range, where the block size is 3
× 3 pixels. The target block is a center search block with a
search range of Ft+1. The search blocks cover eight direc-
tions by moving one pixel from the center block in the search
range. Our architecture estimates the match between a target
block and a search block in the search range. The sum of ab-
solute differences (SAD) is used to determine a suitable mo-
tion vector. We define the SADs as cost{DIRECTION} (e.g.,
costNW, costN and costNE). Our block matching method is
applied by determining the minimum cost. Figure 1(b) shows
the motion vector estimation algorithm. Our architecture cal-
culates the costs using the pixels from both frames. To fa-
cilitate real-time processing, our architecture rewrites a pixel
from Ft+1 sequentially after calculating the costs using a
pixel from Ft. The number of SAD calculations is decreased
by reducing the search range. Our architecture can estimate
the motion vectors within a short period of time.

cost
buffer

cost
buffer

cost
buffer

cost
buffer

cost
buffer

read
this pixel

write this pixel

line buffer
+ 1 pixel

(a)

(b) number of cost buffers

number of
F
t+1

’s buffers

Figure 3: Estimated number of Ft+1 buffers

2.2 Proposed Architecture

we here explain the architecture used for motion vector es-
timation. Figure 2(a) shows the timing when pixels in the tar-
get block are read. It should be noted that the inputs always
flow to outputs in a straightforward manner in this model.
Figure 2(b) shows the process used to calculate costNW.
CostNW is the SAD for a target block and a search block,
which is located in the northwest relative to the center of the
search block. When a target block pixel is inputted, our archi-
tecture calculates the sum of absolute difference between the
pixels in the target block and the pixels in the corresponding
search block. Our architecture simultaneously calculates the
SADs in eight directions for the other search blocks.

Figure 3(a) shows that several registers are required to
rewrite the frame Ft. If the gray pixels are used as inputs,
the black pixels are not used as search blocks after calculat-
ing the costs. Our architecture rewrites the pixels. The buffers
required to hold the pixels for Ft+1 contain the line buffer +
1 pixel. Figure 3 (b) shows the number of buffers needed to
store the intermediate results of the cost calculations. The im-
ages are input in series. The pixels in an image are used as
inputs in sequence across the search range. During a calcu-
lation of a cost in a search range, our architecture needs to

- 146 -

Table 1: FPGA Implementation Summary
Input Res. Depth CLK LUT Reg. Block mem.

10×10 16-bit 80 MHz 1053 572 12736 bits

F
t+1

F
t

Figure 4: Schematic image of motion vector estimation

hold costs in another search ranges. The cost calculations for
a search range require nine buffers to hold the intermediate
cost calculations. The buffers required for the costs need 9 ×
one of lines for the search ranges.

2.3 FPGA Implementation Results

We analyzed the results obtained using the proposed meth-
ods based on the FPGA implementation of the motion vector
estimation architecture. The proposed system for motion vec-
tor estimation was implemented using a commercial FPGA
board (MU-200SX II with Altera Stratix II). Table 1 summa-
rizes the implementation setup. The input images contained
10 × 10 pixels. The timing clock of the architecture was op-
erated at 80 MHz, which is the highest operating clock speed
for a MU-200SX II system. We verified whether our archi-
tecture could operate at a clock speed of 80 MHz. Figure 4
shows one of the test patterns used for motion vector estima-
tion. We assumed that the pixels moved less than one pixel
between frames. We shows the results generating an image
from the output signal of the FPGA. We confirmed that the
desired results were obtained.

3. Machine Learning of Motion Vectors

3.1 Proposed Method

Figure 5 shows a summary of the proposed machine learn-
ing method used for motion vectors. Images must be sub-
jected to feature extraction by machine learning before they
can be used as inputs by a neural net [6]. An image is sepa-
rated into specific block sizes and the vector’s direction and

1.0

1.0

0

0

0

0.8

0.5

0.7

0.8

0.6

0.4

w
1

w
2

w
3

w
8

w
9

w
10

w
11

w
13

w
12

w
14

w
15

.

.

.

.

.

.

-1

w
0

5

10

00

0

8

0

18

13

15

10

8

0

w
7

output

supervised
data

(1)

(2)

(3)

(4)

(5)

(6)

θ

Figure 5: Summary of machine learning process for motion
vectors

size are extracted, as shown in Figure 5(1). Next, the sums
of the vector sizes in a block are calculated in each direction
and the values are normalized to values from 0 to 1, as shown
in Figure 5(2). Further, summed vector sizes are calculated
for each combination of two vectors and the values are nor-
malized to values of 0 to 1, as shown in Figure 5(3). All
blocks are processed in a similar manner, as shown in Figure
5(4). This feature extraction method is built based on Pog-
gio’s HMAX model [4]. Next, the set of values is used as
an input for a simple perceptron. In the simple perceptron,
the set of values are connected by weights (from w1 to w15 in
Figure 5), where the output is 1 if the sum of the values ex-
ceeds a threshold value (w0 in Figure 5), whereas the output
is –1 if the sum of the values does not exceed the threshold
value, as shown in Figure 5(5). The user provides supervised
data when the simple perceptron is learning, as shown in Fig-
ure 5(6). The simple perceptron compares the output with the
supervised data and the connected weights are updated if the
two values are different.

3.2 Simulation Results

We verified whether our method could classify images
recorded using a high-speed camera or an in-vehicle camera
into two classes, i.e., danger or safety, as mentioned earlier.

- 147 -

safe

danger

Figure 6: Classification of images recorded using high-speed
camera

We conducted a simulation where the algorithm was imple-
mented in the C language.

First, we used a high-speed camera that operated at 1000
fps to record various motions made by objects (e.g., a space
shuttle model or a box), which were verified using their im-
ages. The recorded images were used to estimate the motion
vectors, where we assumed that a pixel at specific coordinates
moved less than one pixel between frames. Next, we inte-
grated 80 frames of the motion vectors to calculate the vector
size. The image size was 400 × 300 pixels and the block
size used was 40 × 30 pixels. The simple perceptron learned
800 dangerous samples and 1,200 safe samples, where learn-
ing converged when the simple perceptron had learned all of
the samples approximately 50 times. Figure 6 shows the re-
sults for the motions of the space shuttle model, which were
recorded using a high-speed camera and classified by the sim-
ple perceptron. The samples were used for learning and they
were classified with our method.

Further, we verified the suitability of our method using im-
ages captured by an in-vehicle camera. For these images, the
optical flow was detected by block matching as a motion vec-
tor. The image size was 400 × 300 pixels and the block size
used was 40 × 30 pixels. The simple perceptron learned 212
dangerous samples and 749 safe samples, where learning con-
verged after the simple perceptron had learned all of the sam-
ples approximately 500 times. Figure 7 shows the samples
recorded using an in-vehicle camera and their classification
results with the simple perceptron. The samples were used
for learning and they were classified using our method.

4. Summary

The results indicated that the proposed architecture could
be used to estimate motion vectors based on a small number

safe

danger

Figure 7: Classification of images captured using in-vehicle
camera

of calculations, and a simple perceptron classified the images,
where the outputs were used for learning by our feature ex-
traction method.

Acknowledgment

The authors would like to thank the Semiconductor Technol-
ogy Academic Research Center (STARC), Japan for funding
this research project.

References

[1] T. Onoye, ”Recent Trends on Media Processors for Em-
bedded Systems,” The Journal of The Institute of Image
Information and Television Engineers, Vol. 63, No. 9, pp.
1185–1187, 2009.

[2] R. Sale, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet,
G. Lemieux, P. Pande, C. Grecu, and A. Ivanov, ”System-
on-Chip: Reuse and Integration,” Proc. IEEE, vol. 94,
No. 6, pp. 1050–1069, 2006.

[3] P. Garrou, R. Ramm and C. Bower, ”Handbook of 3D In-
tegration: Technology and Applications of 3D Integrated
Circuits,” 2008.

[4] M. Risenhumber and T. Poggio, ”Hierarchical Models of
Object Recognition in Cortex,” Nature Neurosci, 2(11),
pp. 1019–1025, 1999.

[5] D.I. Barnea and H.F. Silverman, ”A Class of Algorithm
for Fast Digital Image Registration,” IEEE Trans. on
Computers, Vol. 21, pp.179-186 ,1972

[6] I. Guyon, ”Feature extraction: Foundations and Applica-
tions,” Vol. 207, Springer, 2006.

- 148 -

