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SUMMARY This paper describes a guiding principle for
designing functional single-electron tunneling (SET) circuits—
that is a way to elicit the potential functions of a given SET
circuit by using as a guiding tool the SET circuit stability
diagram. A stability diagram is a map that depicts the stable
regions of a SET circuit based on the circuit’s variable coordi-
nates. By scrutinizing the diagram, we can infer all the potential
functions that can be obtained from a circuit configuration. As
an example, we take up a well-known SET-inverter circuit and
uncover its latent functions by studying the circuit configuration,
based on its stability diagram. We can produce various func-
tions, e.g., step-inverter, Schmidt-trigger, memory cell, literal, and
stochastic-neuron functions. The last function makes good use of
the inherent stochastic nature of single-electron tunneling, and
can be applied to Boltzmann-machine neural network systems.
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1. Introduction

Essential to the opening up of future directions in
electronics is the development of circuit technologies
that can implement complex and high-level functions
in commpact construction. The single-electron tunne-
ling (SET) circuit is a promising candidate for
promoting such next-generation technologies. This
paper introduces a guiding principle for designing
functional SET circuits—that is a way of eliciting the
potential functions of a given SET circuit, using the
SET circuit stability diagram as a guiding tool. The
authors hope that it will stimulate the thinking of
readers who are aiming to create novel functions by
using single-electron tunneling circuit.

The SET circuit [1], [2] is an electronic circuit
that consists of tunnel junctions and capacitors. For a
general explanation, see Ref. [3]. A SET circuit has a
number of nodes or islands that are interconnected by
means of tunnel junctions. Its internal state is deter-
mined by the configuration of its electrons (i.e., the
pattern in which the excess electrons are distributed
among the islands). This pattern is expressed by a set
of numbers that indicates the number of excess elec-
trons on the islands. The circuit varies its electron
configuration through tunneling in response to the
inputs, and thereby changes its output voltage as a
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function of the inputs. A change of the electron
configuration caused by a tunneling event, at low
temperatures, can occur only when the energy of the
circuit decreases along with the tunneling. This phe-
nomenon is called the Coulomb blockade. Owing to
this, the SET circuit shows strong nonlinearity in its
characteristics. It also shows complex internal states:
at given inputs, it may be monostable, bistable, multis-
table, or unstable. This is the conspicuous property
that distinguishes SET circuits from CMOS circuits. It
is therefore probable that various functions can be
produced from SET circuits by use of a simple circuit
configuration.

A SET circuit changes its state to decrease its free
energy; hence, the circuit operates as an organic whole
(this is true even if the circuit is composed of a number
of subcircuits). Therefore any circuit has to be
designed taking into consideration the global stability
of the whole circuit. Because a SET circuit has com-
plex internal states, a “guide map” is needed to grasp
the overall situation of the circuit. The guide map or
tool for this purpose is known as the stability diagram,
the concept of which was first introduced by Likharev
[1]. Thisis a diagram that illustrates the internal states
of a SET circuit in a multidimensional space of circuit
variables (namely, the voltages of powers and inputs,
and the capacitances of tunnel junctions and
capacitors). Looking at a stability diagram, we can see
the changes of the internal states, the stability, and the
output values, as functions of the circuit variables.
And, most importantly, we can obtain therefrom an
insight into the circuit design. Given the stability
diagram of a SET circuit, we can unveil all the poten-
tial functions that can be obtained from the circuit.

The purpose of this paper is to show with exam-
ples that we can elicit various useful functions from a
given SET circuit by using the stability diagram for the
circuit as a guiding tool. In the following sections, we
first outline the concept of a stability diagram (Sect.
2). After that, we take up the Tucker’s inverter as a
sample circuit, and show that various functions,
besides the well-known inverter characteristic, can be
elicited. We demonstrate the design of three instances,
namely a step inverter, a Schmidt trigger circuit, and a
memory-cell circuit, using the stability diagram (Sect.
3). We also present an example for utilizing the
inherent stochastic nature of single-electron tunneling,
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to wit, a design of a Boltzmann-machine neuron cir-
cuit. By designing appropriate parameters in the sam-
ple circuit, we can implement the function of the
stochastic neuron that produces a random 1-0 bit
stream with the probability controlled by an input—a
task that is difficult for a conventional circuit that uses
CMOS devices (Sect. 4).

2. The SET Circuit Stability Diagram

As mentioned earlier, a SET circuit has complex inter-
nal states and changes its state in various ways as a
result of tunneling. The tunneling is regulated by the
Coulomb blockade depending on the bias conditions
for the tunnel junctions, and the bias conditions are in
turn determined by circuit variables (the applied volt-
ages and the capacitance values). (In the following,
low temperature is assumed for the occurrence of the
Coulomb blockade.) To hold a state of the circuit
stable, or to prevent tunneling through a junction, a
bias criterion for each tunnel junction must be estab-
lished. If one or more bias criterion is disturbed, the
circuit changes into another state by means of tunne-
ling. It is difficult to predict which state the circuit will
take with variables of given values, and therefore a
guide map for the circuit condition is needed.

Such a guide map is called a stability diagram. It
depicts the internal states of a SET circuit in a
multidimensional space of circuit variables. Its con-
cept is as follows. The bias criteria necessary to
maintain a circuit in a stable state are given as a
combination of inequalities, each of which represents a
condition for maintaining the circuit energy minimum.
The inequalities involve all the circuit parameters as
variables, so the stable bias region for a given state is
illustrated as a hyper solid surrounded by a number of
hyper surfaces in a circuit-variable space. (For
instance, the sample circuit in Fig. 2 has 11 variables—
two voltage variables, V;, and Vg4, and nine capacitan-
ce variables. Accordingly, the stable bias region is
drawn in an 11-dimensional space.) Each hyper surface
corresponds to a threshold for tunneling through a
junction in one direction; therefore, if the number of
the tunnel junctions is N, then 2N hyper surfaces exist.
(We assume that a tunnel junction is bilateral. A
directional tunnel junction [4], [5] can be also
assumed, but we will not discuss it here.) For a
different state of the circuit, a different set of hyper
surfaces exists that determine the hyper solid of a stable
region. The stability diagram is a map that illustrates
all the hyper solids that represent all possible states of
the circuit.

To illustrate a stability diagram on a sheet of
paper, we have to reduce the diagram to a two-
dimensional representation. For this purpose, we
select two of the variables and assume the others to be
constant. In general it is convenient, in designing a

IEICE TRANS. ELECTRON,, VOL. E80-C, NO.7 JULY 1997

circuit, to choose the input voltages for the circuit as
the variables. If the circuit has one and only one input, .
it is advisable to use as the other variable the voltage
of another voltage source in the circuit. In such a
two-dimensional stability diagram with two voltage
variables, the hyper surfaces and the hyper solids are
reduced to straight lines and polygons. (For examples
of stability diagrams with two voltage variables, see
Refs. [1], [2], [6], and [7])

An example of such a two-dimensional diagram is
given in Fig. 1(a). (The SET circuit under investiga-
tion is assumed to have N islands and two or more
voltage sources, considering an input to be a voltage
source. We take the voltages of two sources as vari-
ables, and assume the other voltages, if any, to be
constant.) In the figure, the Vi- and V- axes indicate
the values of the two voltage variables. The unshaded
region denoted by (ai, @, -+, ax, **+, av) indicates a
stable (monostable) region, where ay, a, -+, ax, ***, an
are the numbers of excess electrons stored on islands 1,
2, K, N (1<K<N). The shaded region
marked unstable region has no stable state; tunneling
occurs repeatedly here, and consequently the circuit
state varies between two or more different states. In the
area marked bistable region, two stable regions overlap,

(a;, a, ...
ay

AP

Tunnel junction

Capacitor Island k

i
Electron/' \F G

()

Fig. 1 Concept of the stability diagram. (a) An example of a
two-dimensional stability diagram, illustrated on a plane of two
voltage variables ¥, and V,. (b) An electron tunneling, corre-
sponding to the state change from P to Q.
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and therefore the circuit can take on either state.

Suppose we cause the bias point to move from P
to @ by changing the variable voltages; then the cir-
cuit state changes from (a, @, ***, ax, >+, ay) to (ay,
@, -+, ag—1, -+, ay). In this transition, a tunneling
occurs at a certain tunnel junction C;, as illustrated in
Fig. 1(b), to reduce the electron number ax on the
K-th island by 1. The threshold line / in Fig. 1(a)
corresponds to the boundary of the bias condition that
produces tunneling at junction C;.

The stability diagram can be calculated analyti-
cally for a simple SET circuit composed of a few
junctions. But a circuit of greater complexity is
difficult to calculate on paper, so computer simulation
is needed. We have developed a diagram simulator in
order to calculate the stability diagram for a given
circuit. (The operation of a SET circuit can be simulat-
ed in the way given in Ref. [8].)

3. Function Design Using a Stability Diagram

By using the stability diagram as a guiding tool, we
will be able to elicit various functions from a given
SET circuit; we can produce two or more functions
from a given circuit configuration, and can obtain
unexpected or windfall functions from a known circuit
configuration. In the following, we will take up a
known SET inverter as a sample of circuit
configuration and will show how many functions can
be recovered from the circuit configuration. We can
produce various functions, e.g., step-inverter, Schmidt-
trigger, memory-cell, literal, and stochastic-neuron
functions. This section will describe the first four
functions. The stochastic-neuron function will be
discussed in Sect. 4.

3.1 Circuit Configuration and the Corresponding
Stability Diagram

As a sample circuit, we take up the inverter circuit
proposed by Tucker [9] because it is the best-known
example of SET-circuit elements (Fig. 2). It consists
of four tunnel junctions (the junction capacitances are
C;1 and Cjp), two input capacitors (C), two bias
capacitors (C,), and an output capacitor (Coy), with
a voltage source Vg The input and output voltages
are denoted respectively by V., and Vo, The circuit
has three island nodes (L, M, and N), and its internal
state is expressed by a set of the numbers (/, m, n) of
excess electrons stored on the three nodes. Tucker has
determined the capacitance perameters for obtaining
the inverter gain. A sample set of the parameters is:

lezl aF, Qz=2 aF, C1:8 aF, C2=7 aF,
Cour=24 aF. (N

In this section, we will use this set as the capacitance
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Fig.2 Configuration of a quasi-CMOS SET inverter circuit
(the Tucker’s inverter) [9].
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Fig.3 Stability diagram for the circuit configuration of Fig. 2.
For the capacitance parameters, see the text.

parameters. (We will also assume zero temperature and
ignore the co-tunneling phenomenon.)

We calculated the stability diagram for this circuit
configuration using the given parameter set. Illustrated
in Fig. 3 is part of the result plotted on a plane of the
two voltage variables, the input voltage V,, and the
power voltage Vs, The stable regions take on various
configurations.  Most regions overlap with one
another. This complex structure will produce high
functionality. In a set of electron numbers ([ m, n), m
is the main factor of determining the output voltage,
and / and n change the output voltage slightly. In the
range of the voltage variables of Fig. 3, the numbers of
m=—1, 0, and | produce output voltages of about 6,
0, and —6mV, while / and n modify the output
voltage by 0.7 mV or less in the same way. In Fig. 3,
the approximate output voltage for each state is illus-
trated by putting a letter (H, L, or LL) before the
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electron-number set; e.g., H(0, —1, 0) indicates a state
of high output voltage (about 6 mV), L(0,0, 1) of low
output voltage (about O0mV), and LL(0,1,0) of
much-lower output voltage (about —6 mV).

3.2 Step Inverter

The circuit configuration above is well known as the
quasi-CMOS inverter circuit, and has been cited and

Vout Vout

"

\

\\ /Unstable

Vin Vin

(a) Inverter (b) Step inverter

Vin Vin

(c) Schmidt trigger (d) Literal circuit

Fig.4 Transfer characteristics (an input voltage vs. output
voltage curve) for various functions. (a) Inverter with an unsta-
ble region, (b) step inverter, (¢) Schmidt trigger circuit, and (d}
literal circuit.

Vour [MV]

Y, V]

Fig.5 A transfer curve of the step inverter circuit.
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studied by various researchers. As far as the authors
know, the circuit has been operated conventionally
under conditions such that the operation locus of the
circuit crosses an unstable region, as illustrated in Fig.
3 by the segment P-Q. The inverter therefore has an
unstable region on its transfer curve for intermediate
values of the input (Fig. 4(a)).

This is not a problem for a binary-logic inverter.
But it is fatal to various other applications such as
threshold logic systems, neural networks, and majority-
decision logic systems, because in these applications,
the input for the circuit frequently takes an intermedi-
ate value. For such applications, an inverter circuit is
required that is stable throughout its transfer curve
(Fig. 4(b)). We named this kind of inverter a step
inverter.

The step inverter can be obtained by designing the
circuit so that the operation locus will move in the
segment A-B. This is done by setting Vs equal to
6.245mV. With the increase in input voltage, the
operating point moves from A4 to B, and the internal
state of the circuit changes as H(—1, —1,0) — H{(0,
—1,0) — L(0,0,0) — L(0,0, 1), without crossing an
unstable region. The first two states correspond to
high outputs, while the last two to low outputs, so an
abrupt change (from a high output to a low output)
can be expected. The simulation result for the transfer
characteristic is illustrated in Fig. 5 and agrees with
our expectation. A slight discontinuity in voltage is
observed on both high-output and low-output curves,
and corresponds to the state transitions of H(—1, —1,
0) — H(0, —1,0) and L(0,0,0) — L(0,0, 1). But this
is not a critical problem in most applications. If
necessary, the discontinuity can be removed by adjust-
ing the capacitance parameters of the circuit.

3.3 Schmidt Trigger Circuit

A Schmidt trigger circuit is a threshold circuit that has

7
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—
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Fig. 6 A transfer curve of the Schmidt trigger circuit.



AKAZAWA and AMEMIMA : ELICITING THE POTENTIAL FUNCTIONS

a hysteresis characteristic on its transfer curve (Fig. 4
(c)). It is mainly used to convert noisy alalog signals
to binary signals without chattering.

This function can be obtained by setting the
operation locus on the segment C-D. In the bistable
region denoted by H (0, —1, 0) and L(0, 0, 0), the
circuit will maintain its state the same as just before
entering this region. It can therefore be expected that
the threshold voltage of the circuit will be higher for
an increasing input and lower for a decreasing input;
this condition results in a hysteresis characteristic. The
simulated transfer characteristic (Fig. 6) agrees with
our expectation, and the hysteresis is clearly observ-
able. The width of the hysteresis region can be set up
as desired by adjusting the power voltage Vi, (it can
be also controlled by adjusting the capacitance param-
eters) .

3.4 Memory Cell Circuit

A memory function can be obtained by using a
Schmidt trigger circuit, but there is a better way, as
described below.

Let us consider setting the operation locus on the
two segments O-EF and O-F in Fig. 3. Point O has two
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(c)
Fig. 7 An example waveform of a non-volatile memory circuit.
(a) Write signal V,, (b) reset signal ¥, and (c) the number of
stored electrons.
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stable states, H(0, —1,0) and L(0,0,0) (we here
ignore the third stase LL (0, 1, 0), because this state is
not induced unless the power voltage Vy, is set to be
negative), while point E has the single state H(0, —1,
0) and point F the single state L(0,0,0). Therefore,
moving the operating point in the manner O — E —
O changes the state to H(0, —1,0) and one positive
charge is stored on island M. The state H(0, —1, 0) is
stable at point O, so the storage is non-volatile. And
if the operating point is moved in the manner O — F
— O, the stored positive charge is discharged and the
state is reset to L (0, 0,0). We can therefore produce a
memory-cell function by using Vi, as a write signal
and V;, as a reset signal. A simulation result is illus-
trated in Fig. 7 with the waveforms of the write and
reset voltages. It can be seen that the expected memory
operation has been achieved.

3.5 Literal Function Circuit

A literal function (Fig. 4(d)) (often called a window
function) is a double-threshold function. It is en-
countered frequently in multivalued logic applications.
The literal function can be produced by designing a
circuit such that the circuit changes its state from a
low-output state to a high-output state and returns to
a low-output state with an increase of input voltage.
This function can be achieved by using the same circuit
configuration as above. For this purpose, however, we
have to change the circuit parameters drastically to
create a new stability-diagram configuration that is
suitable for the literal function. We will therefore
pursue this matter at the next future opportunity.

4. Neuron Circuit Utilizing the Stochastic Nature
of Single-Electron Tunneling

One promising area of research on SET circuits is that
of the development of functional circuits that utilize
the inherent stochastic nature of single-electron tunne-
ling. For this development, we must find applications
that make good use of the unstable regions in SET
circuits. An example of such an application is a
Boltzmann machine neuron circuit. In the following,
we will describe the concept of Boltzmann machine
neural networks and the function required for the
neuron. Then we will propose a circuit configuration
for implementing the required function. The desired
circuit can be achieved by modifying the Tucker’s
inverter circuit.

4.1 The Concept of the Boltzmann Machine Neural
Network

The Boltzmann machine is a kind of feedback neural
network that can solve various problems in subjects
such as combinatorial optimization, classification, and
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Fig.8 Boltzmann-machine neural network and its neuron. (a)
Concept of the network, (b) function of a Boltzmann-machine
neuron.

association. Figure 8(a) presents a schematic diagram
of a Boltzmann machine neural network. This consists
of a large network of neurons that are interconnected
bidirectionally with signal connections having various
connection strengths. Each neuron receives input
signals from other neurons and sends output signals to
other neurons. The neuron has two output states,
either 1 or 0, and changes its state according to the
inputs, following a stochastic transition rule; i.e., the
output is a random 1-0 bit stream. All neurons oper-
ate in parallel and each adjusts its own state to those of
all the others. After some processing time, all the
neurons finally reach maximal consensus about their
individual states, and the whole network then stabi-
lizes in a global configuration. For details, see Refs.
[10] and [11].

The structure of mathematical problems such as
combinatorial optimization can be mapped onto the
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structure of a Boltzmann machine by deciding the
connection pattern and connection strengths of the
neurons. In this way, finding the optimal solution to
a problem can be reduced to finding the optimal
configuration of the Boltzmann machine. The unique
and important feature of the Boltzmann machine is its
method of operation, which uses stochastic neuron-
state transition and simulated annealing algorithms.
This allows the Boltzmann machine to reach a
configuration that is globally optimal (and thereby an
optimal solution) without falling into configurations
that are only locally optimal. (This is a problem with
other neural network models.) Because of this, the
stochastic output of the neuron is the most important
feature of Boltzmann machine.

4.2 Required Function for the Neuron Circuit

The basic concept of the Boltzmann machine neuron is
illustrated in Fig. 8(b). It has two constituents, a
sum-of-product unit and a stochastic-response unit.
The sum-of-product unit has a number of input con-
nections and local memory that stores connection
strengths w; (positive or negative analog values).
Also, it receives input signals x; (1 or 0) (and bias
input that controls the threshold of the neuron) from
other neurons and produces the weighted sum of inputs
s(=3w;-x;+w). The stochastic-response unit is
peculiar to the Boltzmann-machine neuron. It gener-
ates an output, 1 or 0, updating the output state every
moment, following a given probability that depends on
the input value of s. The probalility function for a
state 1 is usually chosen to be the sigmoid function,
expressed as

| 1
7O =Trep(=s/T) O = TTexp/T)

(2)

where T (temperature) is the control parameter that
slowly decreases from a large value to zero during the
simulated annealing process. (Here the “temperature”
need not be thermal temperature; any factor that can
change the dependence of f (s) on s can be used.) The
shape of the function is illustrated in Fig. 9 for f (s) =
1/(1+exp(s/T)), with the value of T as a parameter.
Convergence of the network systems requires the capa-
bility of varying “temperature T with continuity by
means of a control signal. The probability function
need not necessarily be this function; any monotonic
nonlinear function can be used, provided that it
becomes 1 (or 0) at large positive values of s and
becomes 0 (or 1) at large negative values of s.

A Boltzmann-machine LSI for practical use must
integrate thousands of neurons on a chip. The crucial
problem in developing such LSIs is how to implement
the generation of randomness for the stochastic opera-
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Fig. 9 Probability function f (s) as a function of a weighted
sum of inputs s. Tllustrated is £ (s)=1/(1+exp(s/T)), with T
as a parameter. :

tion. Every neuron has to have its own randomness
generator, because stochastic independence between
the neurons is required. But presently available cir-
cuits for generating randomness, such as the thermal
noise amplifier and the random bit generator, consist
of many devices and consequently require a large
volume of space; hence, they cannot be used for LSI
implementation.

To overcome this problem, we have presented the
idea that the inherent stochastic character of SET can
be used for implementing the stochastic-response unit
of the Boltzmann-machine neuron [12]. We will
describe in the next section a single-electron neuron
circuit that gives practical form to this idea. The point
is to operate a SET circuit in unstable regions to
produce stochastic output. As described in 2.1, a SET
circuit in unstable regions varies its internal state
between two more states, so an output of a random 1
-0 bit stream can be expected. If the probability for an
output | (or 0) can be changed in response to an input,
then this phenomenon will be useful for the stochastic-
response unit of the Boltzmann-machine neuron.

4.3 Designing a SET Neuron Circuit

The stochastic-response unit has to be designed in a
such configuration that the “temperature 7 of the
probability function can be changed by a control
voltage. This is done by modifying the Tucker’s inver-
ter circuit. Illustrated in Fig. 10 is the circuit we
propose for a stochastic response unit. The circuit
receives a voltage input s from a sum-of-product unit
to generate its internal state and produces the corre-
sponding voltage output y. The bias voltage V,
adjusts the threshold of the circuit by adding an offset
to the input, and the value of the “temperature T is
changed by the control voltage V..

For this circuit configuration, we designed the
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Fig. 10 Configuration of the stochastic-response unit circuit for
a single-electron Boltzmann-machine neuron.

stability diagram for operating the circuit under unsta-
ble conditions around zero inputs. A desirable set of
the capacitance parameters is:

Cj1:1 aF, Cj2=2 aF, C1=12 aF, C2=4 aF,
C3= 10 aF, Cout=24 aF. (3)

Assuming this capacitance set, we drew the stability
diagram in a three-dimensional space of three voltage
variables (s, Vs, and V). In Figs. 11(a) through 11
(d), a part of the diagram is illustrated on a plane of
the two voltage variables, the input voltage s and the
bias voltage V. The control voltage Vg, is: (a) 5.938
mV, (b) 6.2mV, (¢) 6.3mV, and (d) 6.5mV. Figures
11(a) through 11(d) correspond to an increase of the
“temperature T”; T=0 in Fig. 11(a) and T is at
maximum in 11(d).

Four stable regions, i.e. states H(—1, —1,0), H(0,
—1,0), L(0,0,0), and L(0,0, 1), can be seen on the
diagram; the first two states produce a high output
voltage (an output 1), while the last two produce a
low output voltage (an output 0).

We operated the circuit so that the operating point
would move on the segment PQ illustrated in Figs. 11
(a) through 11(d). It can be expected that the proba-
bility for generation of an output 1 can be changed
from 1 to 0 continuously by moving the operating
point from P to Q. A simulation result is illustrated
in Fig. 12 for the condition of Fig. 11(c) (i.e., Vaa=6.
3mV). Figure 12 shows the output voltage waveform
(a rondom 1-0 bit stream) for three instance values of
the input voltage: (a) s=—2mV (point X in Fig. 11
(¢)); (b) s=0mV (point Y in Fig. 11(c)); (c) s=2
mV (point Z in Fig. 11(¢c)). It can be seen that the
probability for an output 1 can be changed by the
input s, where the state of high output is dominant for
a low value of s, while the state of low output is
dominant for a high value of s. Intermediate states can
also be generated, but this is not a problem because
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Fig. 11 A stability diagram for the circuit configuration of Fig. 10, plotted
on a plane of the input voltage s and the bias voltage V,. Capacitance
parameters are: C;=1aF, C;,=2 aF, Ci=12 aF, G;=4aF, Gs=10aF, Cou
=24 aF. Figures 11(a) through 11(d) correspond to an increase of the
control voltage V., therefore correspond to an increase of the “temperature
T.” The value of Vg is: (a) 5938 mV, (b) 6.2mV, (c) 6.3mV, and(d) 6.5

mV.

their duration is always short regardless of the input
voltage value. In this example, the circuit changes its
internal state in a cycle of L(0,0,0) —» L(—1,0,0) —
H(, —1,0) — H(, —1,1) — L(0,0,0). Similar
operation can be observed in other Vy; values. In the
condition of Fig. 11(a), which corresponds to “temper-
ature 77 =0, the circuit acts as a step inverter without
unstable operation.

The probability for an output 1 is illustrated in
Fig. 13 as a funcction of the input voltage, with Vi
(and V,) as a parameter. It is obtained by observing
the output 1-0 stream for 1 us and measuring the total
duration of an output 1. It can be seen that a probabil-
ity function required for the Boltzmann-machine neur-
on can be obtained very easily. It should be noted that

the “temperature 7 of the sigmoid characteristic can
be controlled by changing the value of V4. This
controllability of the “temperature 7 is indispensable
to the network system operation.

5. Conclusion

We introduced a guiding principle for designing func-
tional SET circuits—namely, a way of bringing out the
functionality of SET circuits, using the stability dia-
gram of SET circuits as a guiding tool. A stability
diagram is a map that illustrates the stable regions of a
SET circuit on the circuit-variable coordinates, and it
gives us an insight into the operation of the circuit.
From the stability diagram, we can unveil all the
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Fig. 12 Output voltage waveform for the stochastic-response
unit circuit with V=63 mV and V,=59mV. Simulated for
three input voltages: (a) s=—2mV (point X in Fig. 11(c)),
(b) s=0mV (point Y in Fig. 11(c)), and (¢} s=2mV (point
Z in Fig. 11(c)). Tunnel resistance is set at 5 MQ for four
junctions. Temperature is 0 K.
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Fig. 13 Probability function for the circuit with the parameters
of Figs. 11 and 12. The probability for generating an output |
is illustrated as a function of the input voltage s, for differet
values of “temperature 7.” The “temperature T is controlled
by Via. Curve lis for Vq=5938 mV (¥,=5.515mV), curve 2
for Vyu=62mV (V,=5.7mV), curve 3 for Vyu=63mV (V,=
5.9 mV), curve 4 for Vyy=6.5mV (V,=6.3mV), curve 5 for Vy
=75mV (V,=9.5mV).
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potential functions that can be obtained from the
circuit configuration. As an example, we took up the
Tucker’s inverter circuit, and elicited the latent func-
tions of the circuit configuration, by investigating its
stability diagram. We were able to produce various
functions, e.g., a step-inverter, a Schmidt trigger, a
memory cell, a literal, and a stochastic-neuron func-
tion. The last function makes good use of the inherent
stochastic character of single-electron tunneling, and
has application to Boltzmann-machine neural network
systems. We will be able to produce or obtain un-
expected or windfall functions from a given circuit
configuration by investigating the stability diagram of
the circuit configuration.

(This work was supported by a Grant-in-Aid for
Scientific Research C # 09650375 from the Ministry of
Educations, Sience, Sports and Culture.)
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