W

Analog Integrated Circuits and Signal Processing, 24, 51-57, 2000
2000 Kluwer Academic Publishers, Manufactured in The Netherlands,

Quantum Hopfield Network Using Single-Electron Circuits—A Novel Hopfield Network
Free from the Local-Minimum Difficulty
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Abstract. The concept of the quantum Hopfield network is proposed with examples of its network construction,
which uses single-electron circuits. In this network. two or more threshold elements can change their outputs
simultaneously in a form of coherent combination. This can be put into physical form by utilizing the co-tunneling
phenomenon found in single-electron circuits. In the quantum Hopfield network, a state transition with a large
Hamming distance can occur and therefore the local-minimum difficulty disappears: in consequence the global-
minimum energy state can always be achieved. Use of this property made possible the development of novel
computation devices that solve combinatorial problems without hindrance from the local-minimum difficulty.
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1. Introduction

We here propose the concept of the guantion Hopfield
nerwork, a quantum version of classical Hopfield
networks. The quantum Hopfield network has the
possibility of providing an efficient way of solving
various combinatorial problems without hindrance
from the local-minimum ditticulty. We also propose a
way of putting this concept into physical form that
utilizes the co-tunneling phenomenon in single-
electron circuits.

Introducing quantum mechanics into computation
may produce the capability for massive parallel
processing. The quantum generalization of  the
Turing machine, known as the quantum Turing
machine [1], is an example. The quantum Turing
machine can perform ultrahigh-speed computation
because it can accept as input a coherent superposition
of many different data and subsequently perform a
computation on all of these input data simultaneously.
This concurrency or parallelism can be used to
quickly solve several problems that are difficult with
the classical Turing machine (and existing compu-
ters), such as facroring and discrete logarithms.
Several approaches have been proposed for imple-
menting the quantum Turing machine [2-4].

Is this type of gquantum effect exclusive to the
Turing machine? The authors do not think so. Various

other computation models besides the Turing machine
are known, and it is likely that the parallelism of each
of them can be enhanced with the application of
quantum mechanics. This paper takes the Hopfield
network as an example and shows that quantum
parallelism can be obtained in this computation
models as well.

In the following sections, we will first outline the
concept of the Hopfield network. It is a computation
model for solving combinatorial problems that has
great potential for providing the efficient solution 1o
the problem. But in practice. the Hopfield network has
remained obscure because it cannot operale as
desired. owing to a bothersome phenomenon known
as the local-minimum  difficulry (Section 2). To
overcome this obstacle, we then present the idea that
the local-minimum difficulty can be removed by
introducing quantum mechanics into the network
operation. This can be achieved by utilizing a
quantum effect, the co-tunneling phenomenon, in
single-clectron circuits. A method of constructing the
network with single-electron circuits will be presented
(Section 3). To demonstrate the merit of this quantum
version of classical Hopfield networks, we simulated
the operation of problem solving by computer
calculation. Using these results, we will show that
the quantum Hopfield network can solve a given
combinatorial problem without interference from the
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local-minimum difficulty (Section 4). Finally, we will
conclude by discussing the parallelism in computation
of the quantum Hopfield network (Section 5).

2, The Hopfield Network — A Computation
Model for Solving Combinatorial Problems

The Hopfield network is a computation model for
solving combinatorial optimization problems that
employs the operation of a specific recurrent network
{hereafter we call the recurrent network itself a
Hopfield network.) The concept of a Hopheld network
is illustrated in Fig. 1. The network consists of
threshold elements and connections. The connection
weights Wij and 0 can be given any desired value.
with the restrictions that Wi = Wi and Wi =0. The
outputs Vi of the threshold elements i wrap around to
become the inputs to the network. Each threshold
element i produces an output ** 1" if the weighted sum
of inputs (XWijXi + (i) is positive and an output **(0"
if the weighted sum of inputs is negative. The point of
this network 1s that, starting at a given initial position,
it changes its internal state (a set of the outputs Vi of
the threshold elements) to minimize the value of the
energy function defined by

E = — 1/2EWijViVj — Z0iVi (1)

By adjusting the connection weights we can relate the
energy function of the network to the cost function of
a given optimization problem. In this way, we can find
the solution to the problem simply by observing the
final state that the network reaches. For details, see
[5.6].
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Fig. . Concept of the Hopfield network.

The computation in the Hopfield network is quite
different from the commonly used digital computa-
tion. In the digital one. we cannot obtain the solution
to a problem until we have examined all the possible
combinations of the problem variables: in conse-
guence, the computing time required increases
exponentially with the size of the problem. In contrast,
in the Hopfield network, a given problem is mapped
onto the network itself and is solved quickly through
concurrent or parallel operation of all the elements in
the network. The Hopfield network, therefore, has the
possibility of solving combinatorial problems in a
short time regardless of the size of the problem. This
parallelism may provide an efficient way of solving
difficult combinatorial problems such as NP-com-
plete (nondeterministic polynomial-time complete)
problems, which are often encountered in engineering
fields but take enormous computing time to solve
using digital computers.,

Unfortunately, it is not possible to be certain that
the correct solution can always be obtained. This is
because the Hopfield network in general has many
states of locally minimum energy in addition to the
globally minimum state. In most cases the network
will get stuck in a local minimum and a solution will
not be reached. The present computation model is
based on the premise that the final state of the network
can be considered as minimum in energy, and without
this premise we cannot be convinced that an obtained
result 1s the correct solution. This is an inevitable
drawback in the Hopfield network and has limited the
application field of the Hopfield network.

The local-minimum difficulty above is a natural
result of the fact that each event of state transition in
the threshold elements is independent of others. The
threshold elements update their output states irrele-
vantly with no mutual correlation, and consequently
the network can make at one time only a limited state
transition of a Hamming distance of I (1.e., a transition
corresponding to the output change of one threshold |
element). Under these conditions the network cannot
escape from a local minimum, even if there are other
possible states with lower energy, because an output
change of any one threshold element will increase the
network energy. This is inevitable as far as we are tied
to the classical concept of the Hopfield network.

The way of overcoming this difficulty is to create a
special network in which twe or more threshold
elements can change thetr owtputs sinudtaneously in a

form of coherent combination. In such a network, the
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transition of a larger Hamming distance (a value of 2
or more) can occur, and in consequence the global
minimum state can be achieved without hindrance by
local minima. To materialize such networks, we will
consider utilizing a quantum phenomenon in single-
electron circuits,

3. Constructing the Hopfield Network Using
Single-Electron Circuits

The single-electron circuit changes its state to
decrease its free energy. We can make use of this
property to design a Hopfield network (see [7.8]). We
propose here a likely circuit design. as illustrated in
Fig. 2. A tunnel junction with an excess electron is
used as a threshold element (Fig. 2(a)); we define the
state of the tunnel junction as **0"" if the electron is on
the left of the junction and as ** 1" if it is on the right,
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Fig. 2. Single-electron Hopfield network. {a) Tunnel junction as a
threshold element. (b) Positive and negative connections, (¢) A
sample configuration of the network.

The connection between two tunnel junctions can be
cstablished by a pair of coupling capacitors (Fig.
2(b)): the connection weight can be set to either
positive or negative, depending on the layout of the
capacitor coupling. The overall configuration of the
network is illustrated in Fig. 2(c). (An excess electron
is also set on each bias node.) A ground capacitance
exists between each node and ground (not illustrated
here for simplicity). A sample set of capacitance
parameters is given in the figure. Starting from a given
initial position. the circuit changes its internal state
(the arrangement of electrons) to minimize its free
energy. We have confirmed that the free energy for
this circuit is given by the following expression (see
Appendix):

E = A — 1 /2EBijNiNj — XCiNi (2)

where Ni is the state of each tunnel junction (either |
or 0), and that the coefficients A, Bij, and C'i can be set
at desired value, based on the connection pattern and
the capacitance values of the tunnel junctions,
connection capacitors, and ground capacitors. This
equation is in essence the same as the energy function
(equation (1)) for the Hopficld network. In this way
we can be certain that the proposed circuit will operate
as a complete Hopfield network.

The internal state of this circuit is expressed by a
set of the states of the tunnel junctions. For the sample
circuit in Fig. 2(c), the internal state is expressed as
(NI.N2.N3). The energy values for all possible
internal states are calculated and plotted in Fig. 3.
To show the relationship between the states, we alter
Fig. 3 into the diagram illustrated in Fig. 4. The global
minimum is state (0,0,0). The solid arrows in the
figure indicate the possible occurrence of a state
transition due to one tunneling event, corresponding
to the transition of a Hamming distance of |, which
also occurs in classical Hopfield networks. (We here
assume zero temperatures and therefore no energy
excitation.) For such transitions, states (1.0, 1) and
(0, 1. 1) have several incoming paths but no outgoing
path; therefore these two states seem 1o be local
minima.

But, as described in the following section, the
single-electron Hopfield network has quantum proper-
ties unlike its classical relatives. Consequently the
states (1.0.1) and (0,1.1) do nor act as a local
minimum state and the network never becomes stuck
in these states.
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Fig. 3. Energy levels for the possible states in the sample
network of Fig. 2(c).
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Fig. 4. Energy diagram showing possible transitions for the
sample network of Fig. 3(ch. A solid arrow shows a transition by
one wnneling event (Hamming distance of 1), while a dashed
arrow shows a transition by co-tunneling of two wnneling events
(Hamming distance of 2).

4. Quantum Operation in Single-Electron
Hopfield Networks

The dashed arrows in Fig. 4 indicate the state
transition of a Hamming distance of 2, which can
occur only when two threshold elements (tunnel
junctions) change their states simultaneously with
mutual correlation. Such a transition is nonexistent in
a classical sense, but in the single-electron Hopficld

network, it can actually occur through a guantum
cffect known as the co-tunneling phenomenon.

Co-tunneling is a phenomenon in which two or
more tunneling events occur simultaneously in a form
of quantum coherent combination, In single-electron
circuits, two or more tunnelings can occur simulta-
neously through co-tunneling if such an event
decreases the energy of the circuit, This makes
possible transitions of a larger Hamming distance (2
or more) in single-electron Hophield networks.,
Through this phenomenon, the sample circuit in Fig.
2{c), for example, can change its state from (1.0, 1)
and (0, 1,1) to the global minimum (0,0,0), as
illustrated by the dashed arrows in the figure; thus
the local-minimum difficulty disappears. We call this
type of Hopflield network a quantum Hopfield net-
work, In the quantum Hopfield network, it is certain
that, starting at a given initial state, the global
minimum state can always be established.

To see the behavior of the single-electron quantum
Hopfield network, we here observe through computer
simulation the state transition in the single-electron
network circuits. In the simulation, a Monte Carlo
method was used that is combined with the basic
equations for electric-charge distribution, charging
energy, and tunneling probability; the probabilistic
characteristic of electron tunneling is introduced
through the use of random numbers (see [9]). The
co-tunneling phenomenon is taken into account by the
method in [10]. The temperature was assumed to be
OK.

The result is illustrated in Fig. § for the sample
circuit of Fig. 2(¢), using the device parameters shown
in the figure (the tunnel resistance was set at 200 kQ).
The circuit was initially set at maximum energy state
(1,1,0), then was allowed to change its state without
restraint.  After some transition time the circuit
stabilized in a final state. This procedure, a rrial,
was repeated many times using a different series of
random numbers; the results of three trials are
illustrated in the figure.

In every trial, observed at first were transitions of a
Hamming distance of | (denoted by numbers |
through 6 in the figure). These transitions are the
same ones as observed in classical Hopflield networks.
The network was sometimes able to converge 1o
minimum energy state (0. 0, 0) through transitions of a
Hamming distance of I (as shown by numbers 2 and 5
in the figure), but usually became stuck in the
intermediate states (1.0, 1) or (0. 1. 1) (as represented
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The circuit finally achieves the global-minimum siate.

by numbers 1 and 4, or 3 and 6). If we had been
dealing with a classical Hopfield network, the two
states would have acted as local minima. The situation
in the single-electron Hopfield network was, however,
quite different. After some waiting time, we were able
to observe the transition from the states (1.0, 1) or
(0,1,1) to the global minimum state (0,0,0) (as
shown by numbers 8 or 7). This transition was a
transition of a Hamming distance of 2 that was
induced by the co-tunneling phenomenon.

We have confirmed, by simulation, the same
quantum operation for various network samples. In
complex networks, state transitions of larger
Hamming distances (3 or more) are required for
convergence, but after a certain amount of waiting
time, these transitions are sure to occur. In general,
single-electron Hopfield networks can always reach
the global-minimum energy state, starting at a given
initial state. Using this property will make possible the
development of novel computation devices that solve

combinatorial problems without being troubled by the
local-minimum difficulty.

5. Summary

The concept of the quantum Hopfield network was
proposed and examples were given of its network
construction, which uses single-electron circuits. In
this network, two or more threshold elements can
change their outputs simultaneously in a form of
coherent combination. This concept can be put into
physical form by utilizing the co-tunneling phenom-
enon in single-electron circuits. In the quantum
Hopfield network., a state transition of a large
Hamming distance can be occurred, and in conse-
gquence the global-minimum energy state can be
always achieved. without hindrance from the local-
minimum difficulty. The network calculates simulta-
neously many energy values for all the possible
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combinations of the junction states to find the
minimum energy state. Thus gquantum parallelism is
obtained, though in a form different from that of the
quantum Turing machine. The quantum Hopfield
network will therefore provide an efficient computing
tool for solving various combinatorial problems.

An open question is whether it would be practical
to build single-electron network circuits that can
generate the co-tunneling event frequently enough to
deal with any given complicated problems. Although
various difficulties lie ahead, the authors believe that
theoretical and technological progress will sooner or
later make such network devices feasible.
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Appendix

Equation (2) in the text can be arrived at as follows.
The free energy in the proposed circuit is equal to
electrostatic energy. so the energy value is given by
summing the charging energy stored on each
capacitance in the circuit (each of the coupling
capacitances, the tunnel junction capacitances, and
the ground capacitances). The free energy is therefore
given by a quadratic function of the charge on each
capacitance. Based on the principle of superposition
in electric circuits, the charge on each capacitance can
be given by a linear function of the total charge on
each node in the circuit; the total charge on each node
is —eNi (e: the electron charge, Ni: the state of tunnel
junction i} for the right-hand nodes of tunnel junction
i, —e(l —Ni) for the left-hand nodes of tunnel
junction i, and — ¢ for the bias nodes. In consequence
the free energy of the circuit can be put into the form
of a quadratic function of Ni. Considering that
Ni* = Ni (because Ni is either 1 or 0), the energy
function can be reduced to equation (2) given in the
lext.

References

|. D. Deutsch, **Quantum theory, the church tring principle and
the universal quantum computer.”” Proc. Roval. Soc. Lond.

A400, pp. 97-117, 1985,

L)L Cirae and P Zoller, “*CQuantum computing with cold
trapped lons.” Phvs. Revo Len. 740200, pp. 40014004, 1995,
3. A, Barenco, D. Deutsch, A, Ekert, and R. Jozsa, **Conditional
quantum dynamics and logic gates.” Phvs. Rev. Letr. T4020),

pp. 40834086, 1995,

4. 1. L. Chuang and Y. Yamamaoto, **Simple guanium computer.”
Phys, Rev, A 32(5), pp. J489-3496, 1995,

. 1. 1. Hopfield. ""Neural networks and physical systems with
emergent collective computational abilities.” Proc. Nafl. Acad.
Sei. USA, 79, pp. 2554-2558, 1982,

6. J. J. Hopfield and D. W. Tank., “*Neural computation of
decisions in optimization problems.”” Biological Cybern.
52(3). pp. 141-152, |985,

7. 5. Bandyopadhyay and V. Roychowdhury. **Computational
paradigms in nanoelectronics: quantum coupled single electron
logic and neuromorphic networks.”” Jpu. S Appd. Phys, 35: Pan
1 {6A), pp. 3350-3362, 1996,

8. M. Akazawa, " Quantum Hopfield network using single-electron
circuits.”” Extended Abstracts of the fnr, Conf. on Solid State
Devices and Marerials (SSDM95), pp. 306307, 1997,

9. N. Kuwamura, K. Taniguchi, and C. Hamaguchi, **Simulation
of single-electron logic circuits.”” Trans. IEICE, vol. 177-C-11.
pp- 221-228, 1994,

10, H. D, Jensen and J. M. Martimis, " Accuracy of the electron
pump.”” Phys, Rev. BA6(20), pp. 13407-13427, 1992, and DV,
Averin and A. A, Odintsoyv: **Macroscopic quantum tunneling
of the electric charge in small tunnel junctions.” Phys. Letr, A
1405}, pp. 251-257. 1989,

(=]

A

Masamichi Akazawa was born in Hokkaido on
March 22, 1966. He received the B.E. and Ph.D.
degree in electrical engineering from Hokkaido
University, Japan, in 1988 and 1994, respectively.
He joined the Faculty of Engineering, Hokkaido
University as a Research Associate, and is currently
an Associate Professor in the Faculty of Electrical
Engineering. His current research is in the field of
new functional devices/LSIs including utilization of
single-electron-tunneling  phenomena,  single-flux-
quantum transport, cellular automata and neural
network technique.



Quantum Hopfield Network Using Single-Electron Circuits 57

Eriko Tokuda was born in Heidelberg, Germany,
on May 18, 1974, She received the B.E. degree in
Electrical Engineering from Hokkaido University in
1997. She is currently working toward the M.E.
degree in the Faculty of Electrical Engineering,
Hokkaido University. Her current research interests
are single-electron  devices and neural network
devices.

Noboru Asahi was born in Hokkaido, Japan, on
July 27, 1971. He received the B.E. and M.E. degrees

in Electrical Engineering from Hokkaido University
in 1994 and 1996, respectively. He is currently
working toward the Dr. Eng. degree in the Faculty of
Electrical Engineering. Hokkaido University. His
current research interests are single-electron devices,
single-flux-quantum  devices and neural network
devices.

Yoshihito Amemiya was born in Tokyo on March
5, 1948. He received the B.E., M.E., and Dr. of
Engineering degrees from the Tokyo Institute of
Technology in 1970, 1972, and 1975, respectively.
From 1975 to 1993, he was a Member of the Rescarch
Staff at NTT Electrical Communication Laboratories.
Since 1993 he has been a professor at the Department
of Electrical Engincering, Hokkaido University. His
research is in the field of silicon devices, LSI circuits,
and digital- and analog-processing  systems  that
utilize quantum  phenomena  and  single-electron
cffects/single-flux-quantum transport.



