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ABSTRACT—This paper proposes an approach to design of an artificial central pattern generator 
(CPG) with a feedback control loop. CPG is the biological neural network that generates rhythmic 
movements for locomotion of animals.  A crucial point in designing of an artificial CPG controller is 
how to deal with sensory information on surrounding environments.  Hence, we investigated the 
properties of an artificial CPG controller including   sensory feedback. First, we analyzed the 
stability of the CPG controller, and then how a sensory feedback influences to the output of the 
controller. The results provide a realistic approach to design of an artificial CPG controller. 
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1.  INTRODUCTION 
Central pattern generators (CPGs) are biological neural networks that generate rhythmic movements 

for locomotion of animals, such as walking, running, swimming and flying [1]. The rhythmic movement 
generated by CPG induces a coordination of physical parts. Since the degree of freedom relevant to 
locomotion is very high, this coordination is necessary for stable locomotion. Furthermore, it is believed 
that a rhythmic movement emerge as a stable limit cycle from a global entrainment between the neural 
system that includes CPG and the physical system that interacts with a varying environment [7]. As a 
result, high autonomous adaptation to unpredictable environments during locomotion is achieved. 

In recent years, many researchers have applied such functions of CPG to locomotion control in 
robotics [3]-[5]. For example, Kimura et al. have developed a quadruped walking robot capable of adapting 
to irregular terrain using CPG dynamics [3]. Billard and Ijspeert have applied a CPG-based controller to an 
entertainment robot, AIBO [4]. Lewis et al. have designed and fabricated a custom CPG chip for a biped 
walking robot [5]. 

In robotics, using the CPG controller for locomotion control has the following advantages: 1) 
reduction of the amount of calculation required for motion control as a result of the coordination of 
physical parts induced by rhythmic movements, and 2) autonomous adaptation to unexpected environments 
caused by the global entrainment between the CPG controller and the physical system such as robot arms 
and legs. 

In this paper, we propose an approach to design of an artificial CPG controller including a feedback 
control loop. From the point of view of the global entrainment, one of the key issues in the design of an 
artificial CPG controller is how to deal with sensory information that reflects the dynamics of the physical 
system and a surrounding environment. Hence, we investigate the properties of an artificial CPG controller 
for driving an actuator with sensory feedback control. The results provide a realistic approach to design of 
an artificial CPG controller.  

This paper is divided into five sections. In section 2, we briefly review the neural basis of the 
locomotion control of animals. In section 3, we propose a CPG controller including feedback control loop 
for driving a simple actuator. Section 4 shows the properties of the CPG controller through several 
computer simulations. Finally, our work is summarized in section 5. 
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2.  NEURAL BASIS OF LOCOMOTION CONTROL  
In this section, we briefly review the neural basis of the control principles in locomotion of animals. 

2.1 Central Pattern Generator 
Locomotion of animals, such as walking, running, swimming and flying is based on periodic rhythmic 

movements generated by CPG [1]. CPG consists of sets of neural oscillators, situated in the ganglion or the 
spinal cord. Induced by inputs from command neurons, a CPG generates a rhythmic pattern of nerve 
activity automatically, resulting in a rhythmic movement for locomotion of animals. Such a rhythmic 
movement induces a coordination of physical parts. Since the degree of freedom relevant to locomotion is 
very high, the coordination of physical parts is necessary for stable locomotion. Thus, CPG can be said to 
play the principle role in locomotion of animals.  

2.2 Global Entrainment 
While not necessary for generating a rhythmic pattern of nerve activity, sensory feedback plays also 

important roles in locomotion control [2]. One role of sensory feedback is to regulate the frequency and 
phase of the rhythmic nerve activity depending on varying situations. Another is to entrain between the 
rhythmic pattern of nerve activity and the actual motion of the limbs interacting with the external 
environment. Based on the biological findings, Taga et al. have proposed that a rhythmic movement 
emerges as a limit cycle generated through a global entrainment between the neural pattern generator and 
the physical system that interacts with the environment [7]. As a result of the global entrainment, 
autonomous adaptation to the unpredictable events is achieved. Figure 1 shows a conceptual illustration of 
the global entrainment.  
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a limit cycle

Central Pattern Generator

Environment
 

Figure 1. Conceptual illustration of the global entrainment. 

3.  CPG CONTROLLER 
In this section, we propose an artificial CPG controller including a feedback control loop. First, we are 

going to explain a CPG model underlying the CPG controller. Second, a physical system driven by the 
CPG controller is described, and the feedback control loop of the CPG controller. 

3.1  CPG Model 
In the past a great number of CPG models have been proposed [6]-[8]. Most of these have been 

constructed with coupled nonlinear oscillators. In the present paper, we propose a CPG model based on the 
Wilson-Cowan neural oscillator [9], which consists of a population of excitatory neurons and inhibitory 
neurons with reciprocal synaptic connections (Fig. 2(a)). The neural oscillator is described by the 
following equations: 
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du
dt

= −u + fµ (au −bv + Su)

dv
dt

= −v + fµ (cu − dv + Sv )

 

 
 

 
  (1)  

where u and v express the activities of the population of the excitatory and inhibitory neurons, respectively. 
The parameters a through d express the synaptic strength between the populations of neurons, Su and Sv the 
external inputs such as the bias current and the sensory inputs, τu and τv the time constants. The transfer 
function fµ (x) = tanh(µx) and µ is its gain parameter. Depending on all the parameters, the Wilson-Cowan 
neural oscillator shows various oscillatory behaviors. For instance, Figure 2(b) shows limit cycles for 
stable oscillation in the u-v phase plane. Because of its differentiable transfer function, the stability of the 
Wilson-Cowan neural oscillator can be easily analyzed. Figure 3 shows the stable region of the periodic 
solutions. As driven by an external input, the neural oscillator shows more complex behaviors such as 
bursting and damping. Such dynamic behaviors of the Wilson-Cowan neural oscillator have been 
investigated in detail [10]. 
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Figure 2. The Wilson-Cowan neural oscillators. (a) Configurations. (b) Phase-plane portrait. 

We constructed a CPG network model from the Wilson-Cowan neural oscillators. The dynamics of the 
network model is described by the following equations:  

 

dui

dt
= −ui + fµ ( aiju j
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Figure 3. Bifurcation diagrams of the Wilson-Cowan neural oscillator, where we set parameters as 
follows: a = b, d = 0, µ = 0.5, τu = τv = 0.1 and Su = Sv=0, and HB represents Hopf bifurcations. 

where ui and vi express the activities of the i-th population of the excitatory and inhibitory neurons, 
respectively.  Depending on the parameters aij through dij and the external inputs Sui and Svi, the CPG 
network model has various periodic solutions.  We can utilize such periodic solutions for controlling of 
rhythmic movements in locomotion robots.  

3.2  Joint Actuator and PD Controller 
In the following, we assumed that one neural oscillator drives an actuator connected with a joint of a 

robot. The dynamics of the joint actuator is given as follows:  

 Mθ
⋅⋅
+ kθ

⋅
+ hθ = τ  (3) 

where θ is the joint angle, M the moment of inertia of the joint actuator, k the stiffness parameter, h the 
damping and τ the driving force. By using a simple proportional differential (PD) controller, the driving 
force is given as follows: 

 τ = KP (θo −θ) −KD θ
⋅

 (4) 

where θο is the equilibrium angle. θ  and θ  can be measured quite accurately. KP and KD express the 
proportional and differential parameter, respectively. The output of the neural oscillator gives the 
equilibrium angle expressed as follows: 

 θo = g(u −v)  (5) 

where g is the proportional gain. By using the PD controller, the motion of the joints can be stabilized.  The 
physical system including the PD controller is the standard second-order system, which is given by the 
following equation: 

 
G(s) = Kωn

2

s2 + 2ςωns +ωn
2

 (6) 

where ωn is the natural angular frequency of the system, ζ the damping and K a constant. The dynamic 
characteristics of the system depend on these parameters. We should determine ωn and ζ in order to get a 
sufficient quick response of the controller, especially, ωn should be sufficiently large compared with the 
natural angular frequency of the neural oscillator. The other parameters KP, KD, K and g will be determined 
thorough the following equations, once ωn and ζ are given: 



Design of an Artificial Central Pattern Generator with Feedback Controller 189 

 
2ςωn = KD + h

M
, ωn

2 = KP + k
M

, Kωn
2 = KPg

M  (7) 

where the constant K decides the dynamic range of the joint angle θ. In the following section, we assumed 
that M=1.0, ωn =25.0, ζ =1.5 and K =0.5. 

3.3  Feedback Controller 
One of the key issues in the design of a CPG controller is how to give a sensory feedback to the 

controller since it might influence the stability of the system. Hence, we should consider the stability of the 
whole system by examining the following equations, which is taking into account sensory information: 

 

τ uu
⋅

τ vv
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θ
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Mω
⋅
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 

 
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 
 
 

 (8) 

where Su and Sv are the functions of the sensory information about the joint of the states θ and θ . Since the 
nonlinear function of the Wilson-Cowan neural oscillator is differentiable, the Jacobian matrix of the above 
system is easily obtained. Therefore, the stability of the system with any reasonable sensory feedback 
function can be analyzed. Based on the results, we can determine the parameters of the CPG controller 
including a sensory feedback control. 

4.  RESULTS  
In this section, we show the properties of the CPG controller through computer simulations. 

4.1  Stability Analysis 
We analyzed the stability of the CPG controller including the feedback control (Figure 4). By 

computer simulation, we investigated bifurcations of periodic solutions of the Wilson-Cowan neural 
oscillator with two types of sensory feedback such as follows: 

 
Su(θ,θ

⋅
) =ηθ or ηθ

⋅
, Sv (θ,θ

⋅
) = 0

 (9) 

where η is the feedback gain. The following results were obtained by using AUTO [12], which is an 
application for bifurcation analysis of ordinary differential equations. Figures 4(a) and (b) show the 
bifurcation diagrams of the control system, where HB represent the Hopf bifurcation. By introducing both 
of the sensory feedback ηθ and ηθ , the stable region of periodic solutions is found to be extended (see 
Figure 3). 

4.2  Frequency and amplitude modulation 
Williamson investigated the frequency entrainment between the neural oscillator proposed by 

Matsuoka [6] and the joint actuator modeled by (15) [11]. We also investigated the frequency and 
amplitude modulation of our controller by changing the feedback gain.  In the following, we set parameters 
as follows: a=b=5.5, c = 2.5, d=0, µ=0.5, and τu= τv =0.1. Figure 5(a) shows the oscillatory frequency of 
the controller with the sensory feedback ηθ and ηθ . Depending on the type of the feedback and its gain, 
different responses were observed. Figure 5(b) shows the amplitude of the periodic solution that 
corresponds the joint angle at the same conditions. 

As the joint angle θ  is used for sensory feedback, its sensory feedback gain increases the amplitude of 
the periodic solution with decreasing the frequency of the periodic solution. By using the angular velocity  
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Figure 4. Bifurcation diagrams of the system including feedback control. (a) Su = ηθ and (b) Su = ηθ . 
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Figure 5. Frequency and amplitude modulation of the system. 

for sensory feedback, we can increase the frequency of the controller with increasing the amplitude. Based 
on the results, we can make use of the feedback function given by the following equation for regulating the 
amplitude and frequency of the system independently (Figure 6): 

 Su(θ,θ
⋅
) = ςθ +ηθ

⋅

 (10) 

where ζ is the feedback gain. If we implement our CPG controller as an analog circuit, this feedback 
function should be useful for controlling rhythmic patterns generated by the circuit. According to the 
physical system driven by the CPG controller, we can construct a suitable feedback function. 

5.  SUMMARY 
In the present paper, we propose an approach to design of an artificial CPG controller including a 

feedback control loop. Our controller is based on a CPG model constructed from the Wilson-Cowan neural 
oscillator. In order to achieve stable locomotion, we introduced the PD controller into the individual  
 



Design of an Artificial Central Pattern Generator with Feedback Controller 191 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 1.0 2.0 3.0 4.0 5.0 6.0 7.5

time (s)

jo
in

t a
ng

le
 (

ra
d)

 

Figure 6. Waveforms of joint angle, where ζ = η = 0.0 (bold line) and ζ = 3.5, η = 1.2 (solid line).   

oscillator that drives each of the joints, and used the sensory information about the joint states as a 
feedback to the CPG controller. By several computer simulations, we investigated the properties of the 
CPG controller. First, we analyzed the stability of the periodic solutions of the controller. As a result, it is 
shown that the stable region is extended further by introducing the feedback control. Second, we 
investigated how the sensory feedback and its gain modulate the frequency and amplitude of the joint angle 
driven by the controller. Thus, it is also shown that the feedback function combining the joint angular and 
the angular velocity can regulate the frequency and the amplitude independently. These results provide 
useful information to design a CPG controller. In future, it is hoped, we will be able to implement the CPG 
controller for a biologically-inspired walking robot. 
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