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Abstract

This paper describes non-linear dynamics of electronic systems consisting of single-electron oscillators. A single-elec-
tron oscillator is a circuit made up of a tunneling junction and a resistor, and produces simple relaxation oscillation.
Coupled with another, single electron oscillators exhibit complex behavior described by a combination of continuous
differential equations and discrete difference equations. Computer simulation shows that a double-oscillator system con-
sisting of two coupled oscillators produces multi-periodic oscillation with a single attractor, and that a quadruple-oscil-
lator system consisting of four oscillators also produces multi-periodic oscillation but has a number of possible
attractors and takes one of them determined by initial conditions.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The single-electron circuit is an electronic circuit designed to manipulate electronic functions by controlling the
transport of individual electrons, making use of the Coulomb blockade phenomenon (Grabert and Devoret [3] have
given details). Unlike ordinary electronic circuits, it changes its internal state discontinuously because of electron tun-
neling and consequently shows complex behavior expressed by a combination of continuous differential equations and
discrete difference equations. In this paper, we take up circuit systems consisting of single-electron oscillators and illus-
trate their non-linear dynamics with the results of computer simulation. A single-electron oscillator is known as the SET

cell and produces relaxation oscillations with a discontinuous jump in its node voltage. Coupled with one another, sin-
gle-electron oscillators exhibit high-order non-linear behavior and produce various dynamic phenomena unpredictable
from a single oscillator. We found that a double-oscillator circuit consisting of two coupled oscillators produces multi-
periodic oscillation with a single attractor. We also found that a quadruple-oscillator circuit consisting of four coupled
oscillators has a number of possible attractors and takes one of them determined by the initial value of node voltages –
an interesting behavior in dynamical systems (see [4–7] for comprehensive theoretical and numerical study of the long-
term behavior of dynamical systems with initial condition dependent attractors of oscillation). The following sections
provide details on these studies; we start by making a short sketch of a single oscillator and then describe the behavior
of the double- and the quadruple-oscillator systems.
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2. Single-electron oscillator

The SET oscillation cell (Fig. 1a) is a constituent element of our single-electron oscillator systems. It consists of a
tunneling junction (capacitance = Cj) and a high resistance R connected in series at node 1 and biased with a positive
or a negative voltage Vd. At low temperatures at which the Coulomb blockade effect is observed (i.e. temperature
�e2/(kBTCj)), the cell produces self-induced relaxation oscillation if Vd > e/(2Cj), where e is the elementary charge
and kB is the Boltzmann constant. See Likharev et al. [1] and Averin et al. [2] for detailed explanation. Fig. 1b shows
the waveform of the oscillation of voltage V1 at node 1 for a positively biased cell. The node voltage gradually increases
as junction capacitance Cj is charged through resistance R (curve AB). When the voltage reaches the threshold e/(2Cj), it
drops discontinuously to �e/(2Cj) because of an electron tunneling from the ground to node 1 through the junction,
again gradually increasing to repeat the same cycles. The dynamics is expressed by a combination of continuous
differential equation dV1/dt = (Vd � V1)/(RCj) for charging curve AB and discrete difference equation DV = �e/Cj

for discontinuous drop BC, where DV is the difference in the node voltage before and after tunneling. The period to

of oscillation is to ¼ RCj ln
V dþe=2Cj

V d�e=2Cj

� �
(also see Appendix).
3. Double-oscillator circuit

Coupling positively biased and negatively biased cells (or oscillators) produces interaction between the oscillators
and consequently causes complex dynamics of the system. Fig. 2a shows the double-oscillator circuit. The circuit con-
sists of a positively biased oscillator (left) and a negatively biased oscillator (right) coupled through a capacitance C [8].
The variables of this system are node voltages V1 and V2. The two oscillators interact with each other through the cou-
pling capacitance: for example, if electron tunneling occurs in the left oscillator from the ground to node 1, then node 1
carries a negative charge to decrease its voltage to a negative, and this induces tunneling in the right oscillator from
node 2 to the ground. Because of this interaction, the two oscillators produce synchronization and entrainment.
Fig. 2b is a sketch of the dynamics on a V1–V2 phase plane. Node voltages V1 and V2 change continuously as the junc-
tion capacitances are charged through the resistors. When either of the node voltages reaches the threshold, tunneling
occurs through the corresponding junction, and this causes a discrete change in both node voltages. For instance, the
trajectory of oscillation starts at point 1, proceeds rightward to 2, jumps discontinuously to 3 because of electron tun-
neling in the left junction, proceeds to 4, jumps to 5 (tunneling in the left junction followed by immediate tunneling in
Vd

R

Tunneling Junction

Cj
Time

A

B

C

V1
e/2Cj

V1 Node 1
0

-e/2Cj

V
to

Fig. 1. Single-electron tunneling (SET) cell: (a) circuit configuration and (b) waveform showing oscillation of node voltage V1.
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Fig. 2. Double-oscillator circuit: (a) circuit structure consisting of two SET cells coupled through capacitance C and biased with
positive and negative voltages Vdd and �Vdd and (b) sketch showing multi-periodic oscillation in the circuit, plotted on a V1–V2 phase
plane. Dashed lines show a discrete change caused by tunneling.
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the right junction), proceeds to 6, jumps to 7 (tunneling in the right junction), proceeds to 8, and returns to 1 (tunneling
in the left junction followed by immediate tunneling in the right junction). This way, the circuit produces a multi-peri-
odic oscillation in which discrete-time and continuous-time dynamics coexist.

To express the dynamics of this circuit, we rewrite the variables and parameters as follows:
u1 ¼
2C0

e
V 1; u2 ¼

2C0

e
V 2; C0 ¼

ð2k þ 1Þ
ðk þ 1Þ Cj; k ¼ C

Cj
;

a ¼ R2

R1

; b ¼ 2C0

e
V dd; and t ¼ time

R1C0

;

ð1Þ
where u1 and u2 are normalized voltage of nodes 1 and 2, k is the coupling coefficient (k P 0), a is the resistance ratio
(a > 1), b is the normalized bias voltage (b > 0), and t is normalized time.

With this rewriting, we can express the dynamics of the system. In a range of �1 < u1 < 1 and �1 < u2 < 1, the sys-
tem shows continuous-time dynamics (solid curve segments in Fig. 2b) given by differential equations
du1

dt
¼ ðb� u1Þ �

k
k þ 1

1

a
ðbþ u2Þ; ð2Þ
and
du2

dt
¼ k

k þ 1
ðb� u1Þ �

1

a
ðbþ u2Þ: ð3Þ
When either of the node voltages ui exceeds ±1, electron tunneling occurs, producing a discontinuous jump (dashed
lines in Fig. 2b) in node voltages. The differences Du1 in node voltage u1 and Du2 in node voltage u2 before and after
tunneling are given by difference equations
Du1 ¼ �2 and Du2 ¼ �
2k

k þ 1
ð4Þ
if u1 exceeds 1;
Du1 ¼ 2 and Du2 ¼
2k

k þ 1
ð5Þ
if u1 falls below �1;
Du1 ¼ �
2k

k þ 1
and Du2 ¼ �2 ð6Þ
if u2 exceeds 1;
Du1 ¼
2k

k þ 1
and Du2 ¼ 2 ð7Þ
if u2 falls below �1.
The double-oscillator circuit produces multi-periodical oscillation with a single attractor on a u1-u2 phase plane. We

simulated the operation of the circuit for several sets of parameters and plotted the trajectory of the oscillation on a
phase plane. The trajectory depended on the initial values of u1 and u2 but was attracted, as time passed, to a set of
curve segments (i.e., an attractor) independent of the initial values. Fig. 3 shows an example for the circuit with a given
set of parameters. In Fig. 3a, oscillation trajectories for two initial states P1 and P2 are depicted. The black curve seg-
ments show the transient trajectory originating from initial state P1, and the gray curve segments for initial state P2.
The curve segments in Fig. 3b show the attractor to which the trajectories are attracted as time passes. Figs. 4a and
b show the attractor for other sets of parameters. A slight change in the coupling coefficient produces a considerable
change in the periodicity of oscillation.

The flow of the attractor can be expressed with a sequence of the values of u2 at which the attractor meets line u1 = 1.
For example, the attractor shown in Fig. 3b can be expressed with a sequence of 3 values of u2, and attractors in Figs. 4a
and b can be expressed with 55 and 11 values of u2, respectively. The number of these u2 values is the degree of peri-
odicity in oscillation. To take a general view of the effect of the coupling coefficient on the degree of periodicity, we drew
a bifurcation diagram that plotted the set of the u2 values as a function of k. Fig. 5 shows the diagram, simulated with
b = 3 and a ¼

ffiffiffiffiffi
10
p

. At k = 0, the two oscillators in the circuit produced a self-induced oscillation independent of each
other. As k increased, the oscillators began to interact with each other to produce synchronized periodic oscillation.
Generally speaking, the degree of periodicity increased with the increase of k. However, windows (or regions in which
the degree of periodicity drops) appeared repeatedly.



Fig. 3. Attractor of the double-oscillator circuit, simulated with coupling coefficient k = 0.5, resistance ratio a ¼
ffiffiffiffiffi
10
p

, and bias
voltage b = 3. (a) Trajectories starting from two initial states P1 = (0.5,0.5) and P2 = (�0.7, �0.5) (black curve segments for P1, gray
curve segments for P2), and (b) attractor that the trajectories settle down to.

Fig. 4. Two examples of the attractor simulated with (a) k = 2 and (b) k = 3.6, with a ¼
ffiffiffiffiffi
10
p

and b = 3 for both figures.

Fig. 5. Bifurcation diagram with k as a bifurcation parameter, with a ¼
ffiffiffiffiffi
10
p

and b = 3.
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4. Quadruple-oscillator circuit

Coupling two double-oscillator circuits will produce a new system with more complex dynamics. Fig. 6 shows such a
quadruple-oscillator system consisting of four oscillators – two are positively biased with Vdd and the other two are
negatively biased with �Vdd. The oscillators are connected in a ring through coupling capacitors C so that electron tun-
neling in one oscillator will induce tunneling in the two adjacent oscillators. The variables of this system are four node
voltages V1, V2, V3, and V4.
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Fig. 6. Quadruple-oscillator circuit consisting of two double-oscillator circuits coupled through capacitors C.
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To express the dynamics of this circuit, we rewrite the variables and parameters as
ui ¼
2CsV i

e
ði ¼ 1� 4Þ; Cs ¼

ð8k2 þ 6k þ 1ÞCj

ð2k2 þ 4k þ 1Þ
;

k ¼ C
Cj
; a ¼ R2

R1

; b ¼ 2Cs

e
V dd; and t ¼ time

R1Cs
;

ð8Þ
where ui is the normalized voltage of the ith node, k is the coupling coefficient (k P 0), a is the resistance ratio (a > 1), b
is the normalized bias voltage (b > 0), and t is normalized time.

With this rewriting, we calculated the dynamics of the system. In a range of �1 < ui < 1 (i = 1–4), the system dynam-
ics are given by differential equations
du1

dt
¼ � 2ðcþ f� j� gÞk2 þ ð�4jþ cþ fÞk � j

ð4k þ 1Þð2k þ 1Þ
du2

dt
¼ � 2ðcþ f� j� gÞk2 þ ð4c� j� gÞk þ c

ð4k þ 1Þð2k þ 1Þ
du3

dt
¼ � 2ðcþ f� j� gÞk2 þ ð�4gþ fþ cÞk � g

ð4k þ 1Þð2k þ 1Þ
du4

dt
¼ � 2ðcþ f� j� gÞk2 þ ð4f� j� gÞk þ f

ð4k þ 1Þð2k þ 1Þ ;

ð9Þ
where
c ¼ bþ u2

a
; f ¼ bþ u4

a
;

j ¼ b� u1; g ¼ b� u3:
ð10Þ
When any of node voltages ui reaches the threshold value of ±1, an electron tunnels at the corresponding node, and this
leads to a discrete change in node voltages of the four nodes of the system. For instance, if u1 reaches +1, tunneling
occurs in oscillator 1 from the ground to node 1. This produces a discontinuous change in node voltage given by dif-
ference equations
Du1 ¼ �2 ð11Þ
for node 1,
Du2 and Du4 ¼ �
2kð2k þ 1Þ

2k2 þ 4k þ 1
ð12Þ
for the two adjacent nodes 2 and 4, and
Du3 ¼ �
4k2

2k2 þ 4k þ 1
ð13Þ
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for the diagonally positioned node 3. In case u1 falls below �1, electron tunnels from node 1 to the ground, and the
change is positive for every node voltage. Tunneling at any other node leads to a similar change in the four node
voltages.

We simulated the operation of the quadruple-oscillator circuit for various parameter settings and found that this
system showed multi-periodic oscillation with a number of possible attractors instead of a single attractor. The attractor
the system actually took was determined by the initial values of the four node voltages ui (i = 1–4); in other words, some
initial conditions evolve to a certain attractor, and other initial conditions evolve to a different attractor. To understand
the behavior of this system entirely, we need to draw four-dimensional basin diagrams for various parameter settings.
However, drawing such basin diagrams requires a long numerical computer simulation. We are currently carrying out
computer simulations on the basin diagram but have yet to complete it. Therefore, we will show only part of our sim-
ulation still in progress.

Fig. 7 shows an example, a simplified two-dimensional basin diagram for a sample parameter setting of k = 1,
a ¼

ffiffiffiffiffi
10
p

, and b = 3. It was drawn as follows:

(step 1): The attractor of oscillation was calculated and plotted on a four-dimensional u1–u2–u3–u4 phase space for a
given initial condition (u01, u02, u03, u04), where u0i are the initial values of node voltages ui. For simplicity, the
initial voltages of nodes 1 and 3 (and initial voltages of nodes 2 and 4) were assumed to be the same in ampli-
tude but inverse in polarity: i.e., u03 = �u01 and u04 = �u02. Therefore initial conditions can be plotted on an
u1–u2 plane.

(step 2): The calculated attractor was orthogonally projected onto the u1–u2 plane to reduce its dimensions. The pro-
jected attractor consisted of a number of curve segments on the u1–u2 plane. Figs. 7a and b show the pro-
jected attractor for two sample initial conditions.
Fig. 7. Attractors and basins of the quadruple-oscillator circuit, simulated with a parameter setting of k = 1, a ¼
ffiffiffiffiffi
10
p

and b = 3. (a,b)
two of the three attractors projected onto a u1–u2 plane, and (c) basin for the attractors. Regions A, B, and C are the attracting basins
for the first (a), the second (b) and the third attractors, respectively.
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(step 3): Steps 1, 2 and 3 were repeated many times to obtain projected attractors for various initial conditions.
(step 4): The basins of attraction for the projected attractors were depicted on a u1–u2 plane.

The resultant basin diagram is Fig. 7c. The sample system has three possible attractors; the first is shown by Fig. 7a,
the second is shown by Fig. 7b, and the third is similar to Fig. 7b but the number of curve segments is somewhat smal-
ler. The attractor actually taken was determined by the initial conditions: that is, initial conditions in region A in Fig. 7c
Fig. 8. The whole of the basin diagram for a parameter setting of k = 1, a ¼
ffiffiffiffiffi
10
p

and b = 3. Shaded regions are the basins of the first
attractor (Fig. 7a), and non-shaded regions are the basins of the second (Fig. 7b) and the third attractors.

Fig. 9. Basin diagram (a) for a parameter setting of k = 3.6, a ¼
ffiffiffiffiffi
10
p

, and b = 3. Three possible attractors exist. Shaded regions in (a)
are the basin of one attractor (b) and non-shaded regions are the basins of the other two attractors (one is shown in (c)).
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lead to the first attractor (Fig. 7a), initial conditions in region B lead to the second attractor (Fig. 7b), and initial con-
ditions in region C lead to the third attractor.

Fig. 8 shows the whole of the basin diagram on a u1–u2 plane (�1 < u1 < 1 and �1 < u2 < 1). The shaded regions are
the basins of the first attractor (Fig. 7a), and non-shaded regions are the basins of the second and the third attractors
(these two are labyrinthine and undistinguishable on the figure).

Fig. 9 shows another example, calculated with a parameter setting of k = 3.6, a ¼
ffiffiffiffiffi
10
p

, and b = 3. Also three pos-
sible attractors exist. The shaded regions in Fig. 9a are the basins of one attractor (Fig. 9b) and non-shaded regions are
the basins of the other two attractors (one is shown in Fig. 9c).
5. Summary

Coupled single-electron oscillators are electronic complex systems whose dynamics is described by a combination of
continuous differential equations and discrete difference equations. Computer simulation shows that the complexity of
system’s operation increases as the number of coupled oscillators increase. That is, (i) a single oscillator shows only
simple relaxation oscillation, (ii) the double-oscillator system produces multi-periodic oscillation with a single attractor,
and (iii) the quadruple-oscillator system also produces multi-periodic oscillation but has a number of possible attractors
and takes one of them, as determined by the initial conditions. An open question is what kind of complexity would
appear in systems with larger number of coupled oscillators. For example, what kind of new complexity would appear
in a double quadruple-oscillator system? To answer this, we are now analysing and simulating the operation of large-
scale coupled oscillator systems.
Appendix. Waiting time for tunneling

Strictly speaking, tunneling is a stochastic process with a probabilistic delay between when the node voltage exceeds
threshold voltage e/(2Cj) and when actual tunneling event takes place. Therefore, the period of oscillation shows prob-
abilistic fluctuation expressed by to+Dt, where probabilistic delay or waiting time Dt varies at every tunneling event.
However, we have theoretically confirmed that waiting time decreases to a value far smaller than to as resistance R

increases. We can consider normalized waiting time to be 0 if we use a sufficiently large resistance. The situation is
the same in the circuits described in Sections 3 and 4.
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