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We discuss the integration architecture of spiking neu-
rons, predicted to be next-generation basic circuits of
neural processor and dynamic synapse circuits.  A key
to development of a brain-like processor is to learn
from the brain.  Learning from the brain, we try to
develop circuits implementing neuron and synapse
functions while enabling large-scale integration, so
large-scale integrated circuits (LSIs) realize functional
behavior of neural networks. With such VLSI, we try
to construct a large-scale neural network on a single
semiconductor chip.  With circuit integration now
reaching micron levels, however, problems have
arisen in dispersion of device performance in analog
IC and in the influence of electromagnetic noise. A
genuine brain computer should solve such problems
on the network level rather than the element level. To
achieve such a target, we must develop an architecture
that learns brain functions sufficiently and works cor-
rectly even in a noisy environment. As the first step,
we propose an analog circuit architecture of spiking
neurons and dynamic synapses representing the model
of artificial neurons and synapses in a form closer to
that of the brain. With the proposed circuit, the model
of neurons and synapses can be integrated on a silicon
chip with metal-oxide-semiconductor (MOS) devices.
In the sections that follow, we discuss the dynamic
performance of the proposed circuit by using a circuit
simulator, HSPICE.  As examples of networks using
these circuits, we introduce a competitive neural net-
work and an active pattern recognition network by
extracting firing frequency information from input
information.  We also show simulation results of the
operation of networks constructed with the proposed
circuits.

Keywords: dynamic synapse, depressing synapse, analog
VLSI

1. Introduction

Phase I of R&D on neural network hardware success-
fully ended around 1990 with the fabrication of ana-

log/digital circuits that emulate conventional neural net-
works. R&D has since focused on the development of
applications and industrialization of the neural networks
based on achievement of Phase I, such as improvement
of classical implementation of neuron on silicon chips
[1-3] and development of vision sensor chips. 

Hardware developers currently tend to apply a con-
structive method for designing neural circuits. Neuromo-
phic analog LSIs are constructed by a method based on
the latest achievements in physiological studies. To real-
ize advanced brain functions in neural processors apply-
ing the constructive method, we must study modern
neural networks that employ dynamic characteristics of
actual neurons, i.e., spiking neuron and dynamic syn-
apses.

Studies on neural hardware focusing on spiking prop-
erties of neurons fall into two groups: those aiming at
reproduction of spiking characteristics and those empha-
sizing network construction using the spiking neuron [4].
We have focused on neural hardware mimicking spiking
characteristics of neurons and also functional properties
possible to be produced with networks using the spiking
neuron circuit we developed [5]. Since most of hardware
developers are not familiar with mathematical models or
physiological experiments, we require cooperative R&D
with specialists in these fields. We often hear in recent
cooperative study that there is a need to develop large-
scale neural networks using analog neuron (closer to the
Hodgkin-Huxley model) which is far from the simple
spiking neuron models, and thereby produced  problems
in computer load (simulation time).   This factor  hinders
us from understanding the neural system.  Our target here
is to develop an analog VLSI that integrates large-scale
analog neural circuits. The VLSI is expected to operate
in parallel real time, that is, to develop neural chips  hold-
ing many analog neuron models, to solve the load prob-
lem.  Developed chips are provided as IP (Intellectual
Property: in the VLSI field, this term indicates applica-
tion specific circuits blocks capable of being reused in
other devices), so it will become possible to construct a
platform that enables electronics engineers and re-
searchers in other field to design their original neural

Kanazawa, Y., Asai, T., and Amemiya, Y.

208 Journal of Robotics and Mechatronics Vol.15 No.2, 2003



hardware. Employment of analog parallel architecture for
neural circuit permits real time emulation of large scale
network (not-simulation) which employs cell models that
exhibit stiff responses, for which digital processors are
poor to simulate. On the other hand, a neural circuit fab-
ricated with semiconductor device (silicon neuron) is ro-
bust physically and electrically as compared with actual
neurons, namely,  precision and reproductivity of cir-
cuit’s response are better than that of actual neuron’s
response.  Thanks to such properties of analog neural
circuits, a researcher is able to construct a real time neural
network regardless its size of network. Such a network is
easy to handle electrically and physically, when com-
pared with an actual neuron network. Such neural net-
work permits to construct "new environment for
experiment of neural network" more realistic when com-
pared with virtual model constructed on digital computer.
Against such advantage, the analog implementation of
neural circuits includes the following disadvantage. It is
inferior in (1) adjustments of impedances similar to
physiological experiments, (2) real-time multichannel
measurements, (3) construction of three-dimensional
neural structures, such as axons and dendrites in actual
biotissues. Due to restrictions of LSI manufacturing, re-
searchers have decided architectures of neural processors
taking such trade-offs  into consideration.

The ideal neural net for analog implementation has the
following characteristics: 1) the neuron expresses the in-
formation processing result by equilibrium potential or
spiking row; 2) the input is given by the spiking row or
the initial value of dynamics of the spiking row or neu-
rons; 3) a neuron is connected to its neighboring neurons
(or connected to all of neurons whose synaptic weights
are uniform); 4) redundancy is generated on the network
level, not the element (neuron) level. Due to 1), mul-
tipoint measurement is possible. Due to 2), input can be
given to all neurons with smaller numbers of input pins.
3) is difficult, but data transfer with address-event repre-
sentation [6] (firing information represents the position
of the neuron circuit) has solved the problem. However,
this system differs considerably from the constructural
design concept. The characteristics of 4) are technologi-
cally very important, and by successful adoption of the
properties, we have attempted to develop analog LSIs that
overcome problems of low tolerance for noise and mis-
matches in analog devices. The dispersion of physical
parameters of semiconductor devices is extremely low
compared to that of the actual neuron.  To emulate vague
devices such as neurons, dispersion of the semiconductor
device is not a problem; otherwise,  the design concept
of the chip is wrong.

In developing such analog ICs, we studied functional
properties of a "network" of neurons, rather than the
properties of a "neuron".  We do not create devices that
faithfully regenerate the dynamics of neurons and syn-
apses, but construct networks by analog circuits of sim-
plified spiking neurons and synapses having properties

considered necessary at the lowest level.  We propose
LSI architecture of spiking neuron circuit and dynamic
synapse circuit capable of large-scale integrationas a ba-
sic circuit.  We designed the neuron and synapse circuit
compactly, aiming at large-scale integration of neural net-
works on VLSIs. We show an example of construction
of neural hardware (network) using them.

2. Model of Spiking Neuron and Its Analog
CMOS Circuit

A schematic image of a neuron model is shown in Fig.
1.  The difference from the conventional McCulloch-Pitts
neuron model is that the internal state of single neurons
sequentially changes based on the following dynamics:

τe

dE
dt

 = −E + Iin

(e) , . . . . . . . . . . . . . . . . . . . . . . (1)

τ i

dI
dt

 = −I + Iin

(i) , . . . . . . . . . . . . . . . . . . . . . . .  (2)

τm

dU
dt

 = −(U − Vrest) + E − I, . . . . . . . . . . . . . (3)

where 
U: membrane potential of soma, 
E:  excitatory postsynaptic potential (EPSP), 
I : inhibitory postsynaptic potential (IPSP), 
Vrest: resting potential and t: time. 
τe, i, m: time constants

The neuron receives inputs Iin
(e) and Iin

(i) through excita-
tory and inhibitory synapses. The soma charges and dis-
charges its own membrane capacitance through synapses.
When excitatory input increases, membrane potential
rises, and when inhibitory input increases, membrane po-
tential falls.  The neuron outputs an impulse (spike) when
the membrane potential exceeds a preset threshold.  The
most important point of this model, not shown in the

Fig. 1. Schematic image of a neuron model.
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dynamics above, is to reset the membrane potential to
below resting potential after the generation of the spike.
During a certain period after the generation, which we
call a refractory period, a neuron cannot generate addi-
tional spikes even when an excitatory input is given. This
neuron is called an integrate-and-fire neuron (IFN) [7].

We propose an analog CMOS circuit that qualitatively
exhibits the same behavior as the IFN model of (1)-(3).
The circuit was designed based on the current-mode in-
put-output architecture. Because current is summed sim-
ply by connecting output, the current-mode neuron circuit
is optimum for large-scale network integration in which
the sum of output of many neurons is easily calculated.
Large- scale integration of neurons is also difficult if the
power consumption of each neuron circuit is high. We
therefore designed a neuron circuit where MOS transis-
tors operate in their subthreshold region [8].

Figure 2 shows the current mode neuron circuit.
When the MOS transistor operates in the subthreshold
region, drain-source current is expressed by:

Ids = I0e
κV

gs
 ⁄ V

T (1 − e−V
ds

 ⁄ V
T + Vds

 ⁄ V0) . . . . . . . . (4)

Here, potentials of the transistor source and substrate
are assumed to be the same. Ids expresses drain-source
current, Vgs gate-source voltage, Vds drain-source voltage,
V0 early potential, I0 and κ are process-dependent pa-
rameters, and VT=kT/q (k is Boltzmann’s constant, T ab-
solute temperature, q charge of electron; at room
temperature VT is about 26 mV).  Typical values of the
standard 1.5-µm n-well analog CMOS process are I0=0.5
×10-15 A, V0 = 15 V and κ = 0.6. We define the value of
Ids become independent of the magnitude of Vds when Vds
exceeds 4 VT, which we call the saturation region of
operation.  In this case, (4) is simplified as

Ids = I0 exp(κVgs
 ⁄ VT) . . . . . . . . . . . . . . . . . . . (5) 

We call this equation saturation current equation of
MOS transistor at the subthreshold region.

 When the input current through excitatory and inhibi-
tory synapses is expressed by EPSC (excitatory postsy-
naptic current) and IPSC (inhibitory postsynaptic
current), dynamics at junction A in Fig. 2 are given by

Cm

dUi

dt
 = −g Ui + (EPSC − IPSC ) − I0 exp(κVi

 ⁄ VT)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (6)

where
Cm : membrane capacitance and 
g : leakage conductance between junction A and

ground.  
Equation (6) is equivalent to (3) with Vrest =0 when the

last term of the right member is excluded. This term
expresses the current of transistor Ms and this transistor
shunts junction A to ground. The level of shunting is
decided by the magnitude of gate voltage Vi of transistor
Ms. Dynamics of Vi at junction B are obtained from (5)
as:

Cv

dVi

dt
 = I0 exp(κUi

 ⁄ VT) − Ib ,. . . . . . . . . . . . . (7)

where
Cv: capacitance and; 
Ib : current of transistor Mb  

When Ui rises by the increase in excitatory input
EPSC, the current of transistor Mm increases.  The cur-
rent charges Cv through a pMOS current mirror (pCM),
and Vi also rises.  By this increase in Vi, currents of
transistors Ms and M0 increase exponentially as (5). Junc-
tion A is thus shunted to ground immediately after the
increase.  This momentary increase and decrease of Ui
represents generation of spikes. Spiking output is taken
from transistor Ms. Because transistor Mb discharges the
electric charge of Cv, Vi falls below the threshold of tran-
sistor Ms after a certain refractory period. During the
period, the neuron can not output spikes even when ESPC
increases.

3. CMOS Implementation of Dynamic Syn-
apses

A synapse, whose conductivity (weight) changes
based on the firing rate or spike timing of presynaptic
neurons, is called a dynamic synapse [9,10].  The change
of synapse weight in dynamic synapses is caused by
short-term changes in the transmitter discharge and re-
generation cycle at the terminal of presynapses rather
than by learning on a network level.

The simplest operation of the dynamic synapse was
described in (1) and (2) in the preceding section. These
synapses produce EPSP and IPSP by integrating output
(Iin

(e, i)) of the presynaptic neuron. A signal is conducted
to a postsynaptic neuron through EPSP and IPSP. When

Fig. 2. Electrical neuron circuits.
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the firing frequency of the presynaptic neuron increases
and sequential change of EPSP and IPSP comes to be
unable to follow input, the signal conduction efficiency
to postsynaptic neuron drops. Thus, this synapse behaves
as a lowpass filter. Because presynaptic neuron output is
depressed and conducted to the postsynaptic neuron, such
synapse is called depressing synapse  and a synapse act-
ing inversely is called facilitating synapse.

Figure 3 shows the depressing synapse circuit.  De-
pending on the connection type with postsynaptic neu-
rons, depressing synapses are classified as excitatory or
inhibitory. The excitatory (inhibitory) synapse circuit
charges (discharges) the membrane (Cm) of the postsy-
naptic neuron and the membrane potential rises (falls).
Each synapse circuit receives input current Iin

(e, i) and gen-
erates EPSP and IPSP.  EPSP and IPSP are converted to
electric current by MOS transistors Me and Mi, and
charges and discharges the membrane (Cm) of the post-
synaptic neuron.  EPSC (current of Me) and IPSC (cur-
rent of Mi) are obtained from (5) as:

EPSC  = I0 exp(κEPSP  ⁄ VT) , . . . . . . . . . . . .  (8)

IPSC = I0 exp(κIPSP ⁄ VT) ,. . . . . . . . . . . . . . . (9)

The dynamics of the excitatory and inhibitory syn-
apses are

 Ce

dEPSP
dt

 = −I0 exp(κEPSP  ⁄ VT) + Iin

(e) ,. . . . (10)

 Ci

dIPSP
dt

 = −I0 exp(κIPSP ⁄ VT) + Iin
(i) , . . . . . (11)

Ce(Ci) expresses the capacitance between the excita-
tory (inhibitory) synapse and soma.  Equations (10) and
(11) are qualitatively equivalent to (1) and (2).

The depressing synapse circuit (Fig.3) is constructed
with a simple circuit, but it is problematic in handling
impulse input (pulse width of spiking does not depend on
firing frequency). This synapse circuit integrates input
pulses by charging and discharging capacitances (Ce and
Ci). When the values of capacitances are large (integra-
tion for a long period), the maximum amplitude of output
pulse becomes low and the pulse width becomes wide.
Therefore, the maximum amplitude of output pulse is
depressed but the efficiency per spike (here, the quantity
of electric charge which one spike has) does not change
between presynapse and postsynapse, so we propose a
depressing synapse circuit in which the efficiency per
synapse is depressed based on increase of firing rate even
to the input of constant pulse width and whose construc-
tion is easy. Fig.4 shows a depressing synapse con-
structed by combining a current mirror and
common-source amplifier. When there is no input (Iin =
0), voltage Ve of junction A is zero. Therefore, transistor
M1 is in an on state.  When input current is given (Iin>0),
Ve increases and M1 becomes off. Therefore, the current
mirrored to output Iout through transistor M1 and M3 is
zero. Because there is parasitic capacitance Ce at junction
A, the increase of Ve accompanies a short-time delay.
Therefore, transistor M1 becomes on state for a short
time, and the circuit outputs pulsive current.  When the
input current becomes zero again, transistor M2 dis-
charges the parasitic capacitance Ce and Ve returns to

Fig. 3. Excitatory/inhibitorydepressing synapse circuits. Fig. 4. Depressing synapse circuits corresponding to impulse
input.
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zero.  If the pulsive current (spike) is given at a short
interval, subsequent spikes enter before Ve returns to zero.
Because M1 is not perfectly on, the amplitude of output
spike becomes small based on the magnitude of Ve (when
Ve increases, the amplitude of output spike decreases).
Therefore, the efficiency per spike (here, quantity of elec-
trical charge which one spike has) decreases.  Because
current of transistor M2 monotonically increases based on
increase of gate voltage Vbias, when Vbias increases, the
time until Ve returns to zero decreases.  By adjusting
voltage Vbias, it is therefore possible to change the time
constant of depressing.

Here, we propose yet-another dynamic synapse circuit
that exhibits both depressing and facilitating properties.
First, a current integrator as shown in Fig.5 (a) is con-
structed.  Input Iin from the presynaptic neuron is trans-
ferred to junctions A and B by the current mirror (Mp1 to
Mp3) and capacitors Ce and Ci are charged, and transistors
Me and Mi discharge the capacitors Ce and Ci.  When the
firing cycle of the presynaptic neuron becomes shorter
than the charging and discharging time constant of cur-
rent integrators, the mean values of Ve (or Vi) in time
increases.

In this circuit construction, drain voltage Ve and Vi of
transistors Me and Mi take value below 4 VT (MOS tran-
sistor does not operate in saturation).  Therefore when
current of transistors Me and Mi is expressed using (4),
the dynamics at junctions A and B in Fig.5(a) are as
follows:

CiV
.

i = Iin − I0e
κ  V

g

(i)
 ⁄ V

T (1 − e−V
i
 ⁄ V

T + Vi
 ⁄ V0)

CeV
.

e = Iin − I0e
κ  V

g

(e)
 ⁄ V

T (1 − e−V
e
 ⁄ V

T + Ve
 ⁄ V0)

Output (Ve, Vi, Vspike) of Fig.5(a) is given to translinear

multiplier-divider [11].  The input-output characteristic
of the translinear multiplier-divider, shown in Fig.5(b),
is  

Iout = 
Ie

Ii

 Iin

and if transistors M’e and M’i operate in saturation, the
output current of the circuit is obtained from (5) as:

Iout = 
eκ V

e
 ⁄ V

T

e
κ  V

i
 ⁄ V

T

 Iin

Input current Iin from the presynaptic neuron is given
to the translinear multiplier-divider through the current
mirror (Mp1 and Mp4) where Vspike, and Ve and Vi of
Fig.5(a) are given to gates of transistors M’e and M’i in
Fig.5(b).  When Ve>Vi, the translinear multiplier-divider
amplifies input from the presynaptic neuron, and when
Ve<Vi, output is restricted.  If the amplitude of input spik-
ing current from the presynaptic neuron is constant and
Ci=Ce, the relative magnitude of voltages at junctions A
and B is decided only by the current of transistors Me and
Mi.  The current of these transistors increase monotoni-
cally based on the increase of gate voltage Vg

(e) and Vg
(i)

of Me and Mi, so when gate voltage increases, the time
constant of the integration circuit decreases. Therefore, if
Vg

(e) > Vg
(i), the time average of Vi becomes larger than that

of Ve. Consequently, the gain of the translinear multiplier-
divider decreases. Supposing Iin and Iout are output of the
presynaptic neuron and input of the postsynaptic neuron,
this circuit functions as a depressing synapse. If Vg

(e)<

Vg
(i), the mean value of Ve in time becomes larger than

that of Vi, the gain of the translinear multiplier-divider
increases.  This circuit functions as a facilitating synapse.

Fig. 5. Dynamic synapse circuits with depressing and facilitating properties.
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With the proposed circuit, the functions of depression and
facilitation are switched by the balance of the magnitudes
of Vg

(e) and Vg
(i).

4. Result of Simulation

We examined operation of the spiking neuron and dy-
namic synapse circuits by simulation.  The following
simulation result was obtained by circuit simulator
HSPICE with the parameters of AMIS 1.5-µm CMOS
transistors of MOSIS. The minimum size transistors
(channel width and length are 2.3 µm and 1.5 µm) were
used.

Figure 6 shows the simulation result of the spiking
neuron circuit (Cm = 300 fF, Cv = 1 pF, Ib = 1 nA).  When
EPSC is given at the timing in Fig.6(a), the peak of
membrane potential Ui (Fig. 6(b)) decreases based on the
decrease of time interval of EPSC (∆EPSC) and decrease
of spiking output was confirmed (Fig.6(c)). Namely, the
amplitude of output spikes decreased as ∆EPSC decreased.
In this simulation, to make the time constant of the circuit
the same level as the actual neuron (O(10-3) seconds),
capacitances (Cm and Cv) were set at relatively large val-
ues. If it is desirable to operate this circuit faster than the
actual neuron, small capacitances can be chosen (compact
circuits can thus be implemented on a chip).  This circuit
correctly operated on the order of transistor gate capaci-
tance (10 fF in this process; the time constant under the
same bias condition is O(10-6) seconds). Even when using
a relatively redundant 1.5-µm CMOS process, the size of
the neuron circuit on the chip becomes below 10 µm2. If
the input and output of this circuit are assumed to be
output of presynaptic neuron and input of the postsynap-
tic neuron, it operates in the same way as the depressing

synapse in which postsynaptic neuron input decreases
based on the spiking interval decrease of the presynaptic
neuron. This means the depressing circuit can be con-
structed without modification of the circuit.

Figure 7 shows an example of operation of the de-
pressing synapse circuit (Vbias = 0.3 V, input pulse width:
10 µs, pulse amplitude: 0.1 µA). The input current Iin was
given to the circuit as spikes by changing the spike inter-
val (Fig.7(a)). The first spike was given at t = 40 µs.
Subsequent spikes were given at t = 44 µs, 60 µs, 80 µs,
110 µs, 160 µs and 300 µs. When inputs are given suc-
cessively in a short time (around 4 µs to 50 µs in
(Fig.7(a)), the amplitude of the output pulse is depressed
(Fig.7(c)).  As the interval is widened, Ve approaches
zero (Fig.7(b)) and it was confirmed that the amplitude
of the output pulse returns to the initial value. Fig.8
shows the change of amplitude of output pulse to the
interval of input spikes. The abscissa shows the interval
and the ordinate the amplitude of output pulse.  Simula-
tion result and its approximate curve are shown. We con-
firmed that as the spiking interval becomes short, the
amplitude of the output pulse is depressed.

Figure 9 shows an example of operation of depressing
and facilitating synapse circuits. (Ce =Ci =10 pF), input
pulse cycle: 1 ms, pulse width: 10 µs, pulse amplitude: 1
nA).  As designed, when Vg

(e) > Vg
(i) and spiking input Iin

(Fig.9(a)) was given, the difference between Ve and Vi
became big based on increase of number of spiking
(Vi<Ve), and Iout  was depressed based on input of the
spiking row (Fig.9(b); set as Vg

(e)=0.3 V, Vg
(i)=0.2 V). On

the contrary, for Vg
(e) < Vg

(i), Iin increased based on the

input of spiking row (Fig.9(c), set as Vg
(e) = 0.1 V, Vg

(i)=0.3

V).   We confirmed that when input is cut off, current
gain gradually returns to the initial value.

Fig. 6. Results of simulation of spiking neuron circuits. Fig. 7. Results of simulation of depressing synapse circuits.
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5. Example of Network Construction

We constructed a network using the spiking neuron
circuit and the dynamic synapse circuit we propose.  We
introduce examples of a network construction to make
neural competition in a noisy environment and a network
to achieve pattern recognition by extracting information
on firing frequency from the input information.   We
clarify the functional properties generated when network
is constructed using spiking neuron circuit by simulation.

5.1. Competitive Neural Network

The competitive neural network, which is easily seen
in various nervous systems, exhibits selective activation
and inactivation among neurons in the network. Each
neuron receives external stimuli. A neuron receiving the
largest external input is activated, while other neurons are
inactivated after neural competition. When the network
activates both single and multiple neurons based on the
magnitude of the neuron’s input, redundancy is produced
at the network-level [12].  When the concept of firing
time (spike timing), not of firing rate, is introduced in the
information code of the neural network, selection effi-
ciency of neurons can be greatly improved [13]. Aiming
at a brain type processor to efficiently achieve competi-
tion under noise environment, we implemented the ana-
log electronic circuit of the spike-timing-based
competitive neural network.

Figure 10 shows the construction of a competitive
neural network where the neural information is encoded
in terms of spike timing.  Plural IFNs excite one global
inhibitory neuron (GI) and conversely the GI inhibits all
IFNs.  The black circle in the figure represents inhibitory
synapses, and the white excitatory synapses. Periodic
spike inputs were given to these IFNs from outside.  The
magnitude of input information is expressed by the tim-
ing of generation of spikes (not conventional "number of
spikes per time"). A neuron that receives an input spike

early is assumed to have a large input, while a neuron
receives a late spike is assumed to have a small input.
IFN at which input spike arrives early (IFN receiving
large input) generates output spikes.  This is because GI
is excited by generation of output spikes and by that, the
IFN which has not received input spikes yet (IFN with
small input) is inhibited.  We call the network, in which
neuron receiving large input among the plural inputs is
left, the competitive neural network.

 The competitive network consists of synapses of neu-
rons having the dynamics shown in (1)-(3)[13], so the
network is constructed using the synapse circuit having
the performance of (1) and (2) (Fig.3) and the neuron
circuit having the dynamics of (3) (Fig.2).  We call the
circuit in Fig.2 an IFN circuit and the circuit in Fig.3 a
synapse circuit.  

Figure 11 shows the internal structure of the competi-
tive neural processor. IFN circuit generates spiking cur-
rent (Iin

(e)) when it accepts input current (Ispike).  Ispike

generated by each IFN is added by connection and given
to GI (current mirror circuit). The output of GI (the sum
total of Ispike) is connected to inhibitory input terminal

Fig. 8. Attenuation in output spike amplitude against input
spike interval.

Fig. 9. Operations of depressing and facilitating synapse
circuits.

Fig. 10. Construction of competitive neural network with
IFNs.
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Iin
(i) of all IFNs and a closed network is constructed. When

current is given to the inhibitory input terminal, the mem-
brane potential (Ui) falls, so the IFN circuit does not
generate spiking current.  Therefore, IFN at which input
spikes arrive early excites GI and the excitation lowers
the membrane potential at which input spike has not ar-
rived yet.  With this construction, IFN at which input
spike arrives early (receiving large input) generates out-
put spikes.

We simulated the operation of a network with combi-
nation of 100 units of IFN circuits. Each IFN receives
input-spike currents. The period and amplitude of input
spikes were uniform among all neurons. An index (0 to
99) was given to each neuron. A neuron with a small
index number accepts early spikes, while a neuron with
a large index number accepts late spikes. Random train
of spikes (amplitude of 10% of periodic input spike) is
mixed (Fig.12(a)).  We confirmed that overwhelmingly
small number of IFNs generated erronous spikes to the
input (compared to frequency of generation of irregular
input spikes) and several IFNs with smaller numbers gen-
erated correct spikes (Fig.12(b)).

5.2. Pattern Recognition Neural Network

We assume a simple network as Fig.13. Many spiking
neurons are connected to a postsynaptic neuron. Active
neuron outputs spikes at a constant period and inactive
neuron outputs nothing.  The postsynaptic neuron outputs
a spike for VSOMA > VTH, and resets VSOMA after the firing.
VSOMA increases in proportion to the number of presynap-
tic active neurons. Therefore, this network can discrimi-
nate the number of presynaptic active neurons by setting
threshold VTH corresponding to the number of active neu-
rons. VSOMA increases in proportion to firing frequency of
spiking neurons, too. For example, we assume that the
pulse amplitude and pulse width of input spikes, and leak
from VSOMA are constant independent of the firing fre-
quency of input spikes. The value of VSOMA produced by

50 active neurons with a firing frequency of 20 Hz is the
same as the value of the potential produced by 10 active
neurons with that of 100 Hz. Therefore, the performance
of the network to discriminate the number of presynaptic
active neurons shown in Fig.13 largely deteriorates due
to the change of the firing frequency.  It is shown that
the discrimination performance become independent of
firing frequency (discrimination performance is im-
proved) by using the depressing synapse [14]. If input
spikes are given to the depressing synapse successively
in a short period, (the case of high firing frequency of
each neuron), the efficiency per spikes (here, the quantity
of electrical charge that flows into Ci of Fig.13) drops.
Even if the number of input spikes increases with the
increase in firing frequency, the value of VSOMA does not
change greatly because the efficiency per spike is low-

Fig. 11. CMOS cuicuits of competitive neural network.

Fig. 12. Simulation results of competitive network using IFNs
(number of neurons=100).

Fig. 13. Active pattern discrimination circuits using
depression synapses and spike neurons.
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ered.  The discrimination performance of the network
becomes independent of firing frequency. It is expected
that the discrimination result will differ as shown in Ta-
ble 1 between using the depressing synapse and not using
it. Here, presynaptic neurons are located in two dimen-
sions as Fig.13. The active neuron forms patterns such as
"E", "L" and "-".  The number of neurons is the largest
for "E" and the smallest for "-".  We assume that thresh-
old is set to the middle between "E" and "L".  Firing
frequency is expressed by grayscale letters in the table.
Closer to black, the firing frequency is high, and closer
to white, the firing frequency is low.  In the network not
using depressing synapse, even in "E" which intrinsically
does not fall below threshold, VSOMA does not exceed a
threshold at low firing frequency.  In "L", and "-" which
intrinsically does not exceed threshold, VSOMA is expected
to exceed the threshold at high firing frequency. In the
network using depressing synapses, because the depress-
ing synapse lowers the efficiency per spike at high firing
frequency of input, increase of VSOMA becomes inde-
pendent of the firing frequency.  The network is thus
expected to discriminate the number of active neurons
independent of firing frequency.  We implement this net-
work electronically using the dynamic synapse circuit we
designed, and we show that performance approaches the
ideal case (Table 1).

The basic elements of the network in Fig.13 are the
spiking neuron to output impulse and depressing syn-
apses.  Because it is necessary to handle impulse infor-
mation, the network requires either the depressing
synapse circuit in Fig.4 or the dynamic synapse circuit
combining depressing and facilitating performances in
Fig.5. Because this network does not have facilitating
synapses, we adopted the depressing synapse with simple
structure in Fig.4. We constructed a network in which
four synapses are connected to the neurons on a bread-
board using n-MOS (NEC 2SK1398) and p-MOS (NEC
2SJ184).  As input, a pulse with pulse amplitude of about
80 µA and pulse width of 0.5 ms was given.  Bias voltage
Vbias was 1 V.  Time constant of postsynaptic neuron was
0.1 s. Measurement was done for each case using de-

pressing synapse and the case not using. A threshold was
set to the middle of VSOMA for two active neurons and
VSOMA for three active neurons at firing frequency of 80
Hz (VTH is 0.24 V when using depressing synapse and
1.99 V when not using).  The measurement result of the
network is shown in Fig.14. The firing frequencies when
VSOMA exceeded the threshold to the active neuron for the
first time were plotted. The range to be correctly discrimi-
nated is shown too. The range shown in gray represents
the range where the network using the depressing synapse
could correctly discriminate and the range shown in
oblique lines represents the range where the network not
using the depressing synapse could correctly discrimi-
nate.  For one active neuron, VSOMA did not exceed the
threshold even when the firing frequency was raised.
This indicates that for one active neuron, the network
discriminates completely independent of the firing fre-
quency by the effect of the depressing synapse.  From the
experiment, we confirmed that discrimination perform-
ance of the network can be improved by using depressing
synapse.

To confirm improvement of discrimination perform-
ance in a large-scale network, HSPICE simulation was
conducted for the network having 100 synapses. As the
synapse, the depressing synapse in Fig.4 is used.  We
assumed that presynaptic active neuron forms the patterns
such as "E", "L" or "-", and "E" is with 90  active  neu-
rons, "L"  with  50, and "-" with 10.  As input, pulse with
pulse amplitude of 1 nA and pulse width of 10 µs was
given. The time constant of postsynaptic neuron was 2
ms. In experiments, we studied the performance of the
network with both conventional and depressing synapses.
The threshold was set at the value of VSOMA produced by
70 active neurons with a firing frequency of 5 kHz as-
suming the middle pattern between "E" and "L". The
values of threshold VTH were 0.2 V when the depressing
synapse was used and 1.97 V when conventional synapse
was used.  The simulation result is shown in Fig.15.  The
firing frequencies when VSOMA exceeded the threshold to
the active neuron for the first time were plotted.  The

Table 1. Difference in performances of discrimination cir-
cuits for use/nonuse of depressing synapse.

Fig. 14. Measurement results of networks that discriminate
between numbers of active neurons (number of syn-
apse=4).
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discrimination result obtained from the simulation was
the same as shown in Table 1 except for the results of
the conventional synapse with a small number of active
neurons (the letter "-") at the highest frequency. This
indicates that the performance of the network with the
proposed depressing synapse circuits is the same as the
ideal one irrespective of the use of analog CMOS devices.
A letter closest to black expresses firing of each active
neuron at 10 kHz, a letter closest to white at 4 kHz, and
letter of the intermediate color at 7 kHz. When not using
depressing synapses, correct discrimination cannot be
achieved as for "E" and "L".  We confirmed that in using
depressing synapse, correct discrimination can be
achieved for all patterns.  From the simulation result, we
confirm that the discrimination performance of the net-
work can be improved by using the depressing synapse.

6. Conclusion

We have proposed a spiking neuron and dynamic syn-
apse circuit as the first step for developing architecture,
for learning from the brain, that operates correctly even
in a noisy environment.  These represent the model of the
neuron and synapse in a form closer to the brain.  We
showed the dynamic performance of the spiking neuron
circuit and dynamic synapse circuit by simulation. Using
the circuit we propose electronically implemented func-
tional network having synapse and neuron with dynamic
properties (network to achieve neural competition under
noisy environment and network to achieve active pattern
recognition extracting information of firing frequency
from input information).  We examined the performance
of the networks by measurement and electronic circuit
simulation.  From simulation of the network to achieve
neural competition, we confirmed that the network has
tolerance for the noise (though not perfect). From the
measurement and simulation result of the network to
achieve active pattern recognition, we confirmed that the

discrimination performance has tolerance for the change
in the firing frequency by using a depressing synapse.

In the analog electronic circuit, information is ex-
pressed by converting the natural physical quantity into
the physical quantity in the electronic circuit (voltage or
current), so noise directly influences the information han-
dled, making it very important to take measures against
noise in the analog electronic circuit.  In a natural envi-
ronment without noise measures, it is naturally probable
that spiking neuron generates erroneous spike.  Tolerance
for the change of firing frequency means that the network
cancels erroneous spiking information.  The network to
achieve active pattern recognition, such as the competi-
tive neural network, is said to have tolerance for noise.
We showed that the network to achieve active pattern
recognition and the neural competition network have tol-
erance for noise although no special noise measures are
taken.  Although the problem of noise cannot be com-
pletely overcame, the result that analog circuits can be
made naturally noise-tolerant by assembling network cir-
cuit learning from the organism structure is very promis-
ing in development as an antinoise measure in analog
LSI.
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