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The present paper proposes analog integrated circuit
(IC) implementation of a biologically inspired con-
troller in quadruped robot locomotion. Our controller
is based on the central pattern generator (CPG), which
is known as the biological neural network that gener-
ates fundamental rhythmic movements in locomotion
of animals. Many CPG-based controllers for robot lo-
comotion have been proposed, but have mostly been
implemented in software on digital microprocessors.
Such a digital processor operates accurately, but it
can only process sequentially. Thus, increasing the
degree of freedom of physical parts of a robot dete-
riorates the performance of a CPG-based controller.
We therefore implemented a CPG-based controller in
an analog complementary metal-oxide-semiconductor
(CMOS) circuit that processes in parallel essentially,
making it suitable for real-time locomotion control in
a multi-legged robot. Using the simulation program
with integrated circuit emphasis (SPICE), we show
that our controller generates stable rhythmic patterns
for locomotion control in a quadruped walking robot,
and change its rhythmic patterns promptly.

Keywords: biologically-inspired approach, locomotion,
central pattern generator, analog IC implementation

1. Introduction

Biologically inspired approaches have recently suc-
ceeded in locomotion control in robotics [1]. Biological
systems have been evolved to optimize themselves under
selective pressures for a long time. Therefore, biological
findings are expected to provide with us innovative ideas
in design and control methods in robotics.

Central pattern generators (CPGs) are the biological
neural networks that can generate fundamental rhythmic
movements in locomotion of animals, such as walking,
running, swimming, and flying. Such rhythmic move-
ments induce coordination of physical parts [2]. Since the
degree of freedom (DOF) relevant to locomotion is very
high, such coordination is necessary for stable locomo-

tion. Thus, CPG plays a significant role in locomotion of
animals.

Many researchers have applied the concept of CPG to
control walking robots [4–8]. Kimura et al. developed the
quadruped robot, Tekken, adapts to irregular terrain using
CPG dynamics [4]. Billard and Ijspeert implemented a
CPG controller in a quadruped robot [5], and Lewis et al.
designed and fabricated an analog CPG chip for a biped
robot [7]. Such approaches to locomotion control reduce
the amount of calculation required for motion control be-
cause they do not need complicated planning to generate
a motion trajectory, and adapt well to unexpected distur-
bance because a CPG interacts with environments through
sensory information [7].

Focusing on such advantages, we propose hardware
implementation of a CPG-based controller for rhythmic
coordination in quadruped robot locomotion. Previously
proposed CPG-based locomotion controllers have mostly
been implemented in software on digital microprocessors.
Such a digital processor operates accurately, but processes
only sequentially, deteriorating controller performance as
the DOF of physical components in a robot increases. We
therefore designed a CPG-based controller as an analog
integrate circuit (IC) that processes in parallel essentially.
We previously proposed analog IC implementation of a
CPG-based controller for a quadruped robot [12]. Our
previous controller operates through current interaction,
and thus it is difficult to operate stably without precise
tuning of bias currents [12]. In contrast, the controller
we propose here operates through voltage interaction, re-
ducing bias currents and stabilizing operation. Using
the simulation program with integrated circuit emphasis
(SPICE), we show that our CPG-based controller gener-
ates desired rhythmic patterns for locomotion control in a
quadruped walking robot.

This paper is divided into five sections. In Section
2, we propose a CPG-based locomotion controller for a
quadruped walking robot. In Section 3, we describe an
analog IC implementation of the proposed controller. In
Section 4, we confirm the desired operation of the circuit
as a CPG-based controller through circuit simulations. In
Section 5, we summarize our work.
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Fig. 1. Phase diagrams of typical locomotion patterns of
mammals. (a) Walk, (b) Trot, and (c) Gallop.

2. CPG Controller

In this section, we propose a CPG-based controller for
interlimb coordination in quadruped locomotion.

2.1. Biological Principles of Locomotion of Animals

Firstly, let us briefly review the biological principles in
locomotion control of animals. Locomotion of animals,
such as walking, running, swimming, and flying is based
on rhythmic movements. Such rhythmic movements are
generated by the biological neural network known as the
central pattern generator (CPG) [2]. CPG consists of sets
of neural oscillators, situated in the ganglion or spinal
cord. Induced by inputs from command neurons, CPG
generates a rhythmic pattern of neural activity voluntary.
Such a rhythmic pattern activates motor neurons and, in
turn, a rhythmic movement of animals [3].

In locomotion of animals, one of the fundamental roles
of CPG is controlling of each of the limbs. As a result of
interaction with CPGs that actuate muscles at each joint of
the limbs, rhythmic movements of each of the limbs are
stabilized. Another one is cooperation between the limbs,
i.e., interlimb coordination. CPGs that control each of
the limbs are synchronized via coordinating interneurons,
and thus the interlimb coordination is achieved. Since the
DOF of physical parts relevant to locomotion is very high,
physical coordination, such as interlimb coordination, is
required for stable locomotion. Rhythmic movements
generated by CPGs induces this coordination. Thus, CPG
can be said to play a central role in locomotion of animals.

Locomotion patterns of animals are characterized by
phase relationship in limb movements. In other words,
it is considered as phase-locked oscillation of the limbs.
Fig.1 shows typical locomotion patterns of mammals,
such as the walk, trot and gallop. LF, LH, RF, and RH
represent the left forelimb, left hindlimb, right forelimb,
and right hindlimb. Bold lines and thin lines represent
stance phases and swing phases during locomotion.

2.2. CPG Model for Interlimb Coordination

Among the many CPG models [9–11], most are con-
structed using a set of coupled neural oscillators, each
controlling a joint of the limb. We constructed a CPG
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Fig. 2. Configurations of the Wilson-Cowan neural oscillators.

model from the Wilson-Cowan neural oscillator [13], con-
sisting of excitatory and inhibitory neurons with synaptic
connections (Fig.2). The dynamics of the Wilson-Cowan
neural oscillator is expressed by the following equations:

τu
du
dt

��u� fµ�au�bv� su� . . . . . . (1)

τv
dv
dt

��v� fµ�cu�dv� sv� . . . . . . (2)

where u and v express the activity of a group of excitatory
and inhibitory neurons, parameters a through d coupling
strength between the groups of neurons, su and sv exter-
nal inputs, and τu and τv time constants. Transfer function
fµ�x� is given by the hyperbolic tangent tanh�µx�, where
µ is the control parameter. Depending on the parameters,
the Wilson-Cowan neural oscillator shows various behav-
iors, such as a limit-cycle oscillation. Many researchers
have investigated its dynamics in detail [13–15].

By coupling the Wilson-Cowan neural oscillators, we
constructed a CPG network model for rhythmic interlimb
coordination in quadruped locomotion. The dynamics of
the model is expressed by the following equations [13]:

dui

dt
��ui� fµ

�
∑

j

ai ju j�∑
j

bi jv j � sui

�
. . (3)

dvi

dt
��vi� fµ

�
∑

j

ci ju j�∑
j

di jv j � svi

�
. . (4)

where ai j through di j express coupling strength between
groups of neurons. As a CPG network model for rhythmic
interlimb coordination, it is desirable to generate various
rhythmic patterns. This network model can generate dif-
ferent phase-locked oscillation according to its coupling
configuration.

3. Circuit Implementation

We here describe an analog complementary metal-
oxide-semiconductor (CMOS) circuit implementation of
the CPG-based controller. In our previous work, we pro-
posed an analog CMOS circuit implementing a CPG-
based controller for quadruped robotic locomotion [12].
The previous circuit operates through current interaction,
and thus it is difficult to operate stably without precise
tuning of bias currents. To reduce bias currents for stable
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Fig. 3. Schematic of cell circuit.

operation, we propose a novel analog CMOS circuit that
operates through voltage interaction.

3.1. Cell Circuit

First, we describe a cell circuit that constitutes a part
of the CPG controller. The cell circuit consists of four
analog elementary circuits, a differential pair, a current
mirror, an RC circuit and a current source (Fig.3(a)).

The differential pair, the most fundamental components
of the cell circuit, approximates the nonlinearity of the
transfer function. When MOS transistors comprising the
differential pair operate in weak inversion region, the
static response of the differential pair is represented as
[16]:

Iµ�V
�
�V�� � Ib

1� tanh�µ�V�
�V���

2
. . (5)

where Iµ is the output current of the differential pair, V �

and V� the input voltages, Ib the bias current, µ � κ�2VT ,
VT the thermal voltage, and κ the effectiveness of the gate
potential. By subtracting a half of the bias current from
the output current Iµ , we derive transfer function fµ�x�.

We replace the MOS transistors comprising the differ-
ential pair with multiple-input floating-gate (MIFG) MOS
transistors [19, 20] (Fig.3(b)), aiming at the operation of
weighted linear summation of voltages. The floating-gate
voltage of the MIFG MOS transistor is expressed by the
following equation [19]:

VFG �
CGD

CT
VD�

CGS

CT
VS�

CGB

CT
VB�

Q0

CT
�

N

∑
l

Cl

CT
Vl (6)

where Vl is the l-th input gate voltage; Cl the capacitance
between each of the input gates and the floating-gate; VD,
VS, and VB the voltage of drain, source, and bulk; and Q0
an initial charge in the floating-gate. Total capacitance of
the floating-gate is expressed by:

CT �CGD�CGS�CGB�
N

∑
l

Cl . . . . . (7)

where CGD, CGS, and CGB are the capacitance between the
floating-gate and drain, source and bulk (Fig.3(c)). The
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Fig. 4. Schematic of unit circuit.

floating-gate voltage is approximately expressed by [20]:

VFG �

N

∑
l

Cl

CT
Vl . . . . . . . . . . . (8)

where it is assumed that Q0 is 0 and CGD, CGS, CGB �CT.
The differential voltage between the floating-gates of the
differential pair with MIFG MOS transistors is approxi-
mately expressed by the following equation:

V�FG�V�FG �

N

∑
l

C�l
CT

V�l �
N

∑
l

C�l
CT

V�l . . . (9)

where V�

FG and V�

FG are floating-gate voltages, V �

l and V�

l
input gate voltages, and C�

l and C�l capacitances between
each input gate and the floating-gate.

After the output current of the differential pair with
MIFG MOS transistors is reversed by the current mirror,
it is integrated by the RC circuit. The circuit dynamics is
expressed by the following equation:

CV̇ ��
V �VSS

R
� Iµ�V

�

FG�V�FG� . . . . . (10)

where C is capacitance and R resistance. For setting
the equilibrium voltage at zero, we set substrate voltage
VSS � 0 and VSS�R� Ib�2� 0. The equation above is then
rewritten as follows:

CV̇ ��
V
R
�

Ib

2
tanh�µ�V�

FG�V�FG��

��
V
R
�

Ib

2
tanh

�
µ
�
∑

l

C�l
CT

V�l �∑
l

C�l
CT

V�l

��

��
V
R
�

Ib

2
Fµ

�
∑

l

C�l V�l �∑
l

C�l V�l

�
. . . (11)

where we have replaced Fµ�x� � tanh�µx�CT�.
Figure 4 shows a unit circuit that consists of two cell

circuits, where V 1 and V 2 represent the volatege of the
first and the second cell. This unit circuit has reciprocal
interaction via capacitive coupling. The stability of the
equilibrium point in the circuit is attained by adjusting all
physical parameters. If the equilibrium point is unstable
and the system is not divergent, the unit circuit generates
periodic patterns autonomously.
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Fig. 5. Coupling configurations of network circuit.

3.2. Network Circuit

We constructed the network circuit from four unit cir-
cuits, connected to each other via capacitive coupling
(Fig.5). The network dynamics are given by the following
equations:

CV̇ 1
i ��

V 1
i

R
�

Ib

2
Fµ

�
∑
j�n

C1��n
i� j V n

j �∑
j�n

C1��n
i� j V n

j

�
. (12)

CV̇ 2
i ��

V 2
i

R
�

Ib

2
Fµ

�
∑
j�n

C2��n
i� j V n

j �∑
j�n

C2��n
i� j V n

j

�
. (13)

where V 1
i and V 2

i are the voltage of the first and second
cell. The total capacitance of floating gate CT is expressed
by:

CT �CGD�CGS�CGB�∑
j�n

Cm��n
i� j �Cm��n

ctrl�i . . (14)

where Cm��n
ctrl�i

is the capacitance of each of the control
gates, which is added to regulate the total capacitance of
the floating-gate and connected to the grand potential.

During operation, the CPG network circuit generates
different periodic patterns depending on its coupling con-
figuration. Fig.5 shows the coupling configurations that
generate phase-locked oscillations that corresponds the
typical locomotion patterns of mammals, such as walk,
trot, and gallop.

Both state variables and interaction between cell cir-
cuits are expressed as voltage instead of current in the
proposed circuit. Interactions are implemented via capac-
itive couplings. Consequently, the bias currents for stable
operation can be reduced.

4. Simulation Results

In this section, we show the operation of the proposed
circuit through computer simulation. In the following
simulation, we used the circuit simulator HSPICE and
MOSIS AMIS 1�5µm CMOS technology BSIM LEVEL
49 parameters. As typical device parameters, κ � 0�6
and I0 � 1�5�10�16A were assumed. We detremined the
design parameters of the circuit as follows: The aspect
ratio of the MOS transistors �W�L�n � �24µm�8µm�,
�W�L�p � �36µm�8µm�, where W and L are the gate
width and length of the transistors, and n and p represent

����

Fig. 6. Rhythmic pattern generation in walk mode.

����

Fig. 7. Rhythmic pattern generation in trot mode.

n-channel and p-channel MOS transistors, capacitance
C � 20nF, resistance R � 6MΩ, bias current Ib � 500nA,
coupling capacitance

C1��1
i�i �C1��2

i�i � 0�5� C2��1
i�i � 0�3� CT � 1�0pF�

and supply voltages VDD � 1�5V and VSS ��1�5V.

4.1. Rhythmic Pattern Generation
First, we confirmed the rhythmic pattern generation in

the network circuit. Figs.6-8 show three examples of
rhythmic patterns of voltage V 1

i in the network circuit. It
is shown that each rhythmic pattern corresponds to typi-
cal locomotion of mammals such as walk, trot, and gallop.
Here, we assume that V 1

0 �V
1
1 �V

1
2 and V 1

3 drive the joints of
the limbs LF, LH, RF, and RH as shown in Fig.1.

Figure 6 corresponds to the walk mode, in which we
set the coupling capacitance at:

C1��2
0�2 �C1��2

1�3 �C1��2
2�1 �C1��2

3�0 � 0�2pF
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����

Fig. 8. Rhythmic pattern generation in gallop mode.

����

Fig. 9. Rhythmic pattern transition from trot to walk mode.

and others at 0F.
Figure 7 corresponds to the trot mode, in which we set

the coupling capacitance at:

C1��2
0�3 �C1��2

1�2 �C1��2
2�1 �C1��2

3�0 � 0�1pF

C2��2
0�2 �C2��2

1�3 �C2��2
2�0 �C2��2

3�1 � 0�2pF

and others at 0F.
Figure 8 corresponds to the gallop mode, in which we

set the coupling capacitance at:

C1��2
0�3 �C1��2

1�0 �C1��2
2�1 �C1��2

3�2 � 0�2pF

and others at 0F.

4.2. Rhythmic Pattern Transition
Second, we confirmed the transition between different

rhythmic patterns in the network circuit. In the following,
we changed the coupling configuration by switching the
voltage connected to each input gate using multiplexers at

����

Fig. 10. Influence of capacitance mismatch on walk mode.

5.0s. Fig.9 shows an example of transition in the circuit
from trot to walk mode. In such a case, it is shown that
the circuit can change the rhythmic patterns promptly.

4.3. Device Mismatch Influence
The device mismatch can adversely influence on circuit

operation. Mismatch in a pair of transistors, for example,
affect the current transfer ratio of the current mirror and
the offset voltage of the differential pair. Such a mismatch
is reduced by enlarging the size of transistors.

Mismatch in coupling capacitance may adversely af-
fect rhythmic pattern generation in the network circuit.
The device mismatch is usually characterized by standard
deviations. Using the Monte-Carlo analysis, we studied
the effects of mismatch in coupling capacitance, assuming
that the coupling capacitances are implemented with the
double polysilicon capacitors that achieve good matching
performance. In the standard CMOS process, according
to Gaussian distribution, matching accuracy in the double
polysilicon capacitors is represented as σ�∆C�C�, where
C is the average capacitance per unit area.

In the following, we estimate that σ�∆C�C� � 0�1%.
Figs.10 and 11 show results from the Monte-Carlo anal-
ysis in both the trot and the walk mode operation (fifth
iterations). These results show that the mismatch in cou-
pling capacitance slightly affects the relative phases of
phase-locked oscillation while it strongly affects transient
response.

Through several computer simulations, we confirmed
that the proposed circuit operated as predicted. First, we
confirmed that the circuit produces different rhythmic pat-
terns that correspond to locomotion patterns. Second, we
confirmed that the circuit change its patterns promptly.
Third, we confirmed the influence of device mismatch on
circuit operation.

In our simulations, we considered only three coupling
configurations, corresponding to walk, trot, and gallop
modes. However, more interconnections between the unit
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����

Fig. 11. Influence of capacitance mismatch on trot mode.

circuits, then more rhythmic patterns would be generated,
thus, the proposed circuit is feasible as a CPG-based con-
troller for rhythmic interlimb coordination in quadruped
robot locomotion.

5. Summary

We proposed analog CMOS circuit implementation of
a CPG-based controller for rhythmic interlimb coordina-
tion in quadruped robot locomotion. In previous works,
proposed CPG-based locomotion controllers have mostly
been implemented in software on digital microprocessors
that processes only sequentially. Thus, increasing DOF
of physical components of a robot deteriorates controllers
performance. We designed a CPG-based controller as
an analog CMOS circuit that processes in parallel essen-
tially. We previously proposed analog CMOS circuit im-
plementation of a CPG-based locomotion controller for a
quadruped robot [12]. Our previous controller operates
through current interaction, requiring that bias currents
be controlled precisely to ensure that circuit operation is
stable. To reduce bias currents for stable operation, we
designed an analog CPG circuit using MIFG MOS tran-
sistors, aiming at voltage-mode operation.

A CPG-based locomotion controller for rhythmic inter-
limb coordination should generate different rhythmic pat-
terns. Using the circuit simulator SPICE, we have shown
that the circuit generates different patterns that correspond
to typical locomotion patterns of mammals and changes
its patterns promptly. Such circuit properties are sufficient
for a CPG-based controller for a legged walking robot.
Following present research, we are going to develop an
autonomous quadruped walking robot.
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