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Abstract We designed a simple neural segmentation model that is suitable for analog circuit implementation. The
model consists of excitable neural oscillators and adaptive synapses, where learning is governed by a symmetric spike-
timing dependent plasticity (STDP). We numerically demonstrated basic operations of the proposed model as well as
fundamental circuit operations using a simulation program with integrated circuit emphasis (SPICE).
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1. Introduction

Humans can distinguish multiple sensory sources that
coincide. Recent discoveries of synchronous oscillations
in the visual and auditory cortex have triggered much in-
terest in exploring oscillatory correlation in order to solve
neural segmentation problems. Many neural models that
perform segmentation have been proposed, [1–3], but they
are often difficult to implement on practical integrated cir-
cuits. Recently, a neural segmentation model called LE-
GION (Locally Excitatory Globally Inhibitory Oscillator
Networks) [4] has been attracting attention because it can
be easily implemented on circuits [5]. However, not in-
cluding learning of neurons, under certain conditions the
LEGION model does not work. For example, if one object
is in the presence of noise or shadow, even if neurons are
stimulated at the same time, segmentation occurs, resulting
in many different fragments. In other words, the LEGION
model fails to work in the presence of noise, This problem
is solved in our network by including learning as well as
all-to-all connections of neurons.

We have developed a simple neural segmenta-
tion model for analog complementary metal-oxide-
semiconductor (CMOS) circuits. It includes learning and
is suitable for applications such as figure-ground segmen-
tation and the cocktail-party effect, among others. The
model consists of mutually coupled neural oscillators ex-
hibiting synchronous (or asynchronous) oscillations. All
the neurons are coupled with each other through positive
or negative synaptic connections. Each neuron accepts ex-
ternal inputs such as sound inputs in the frequency domain,
and oscillates (or does not oscillate) when the input ampli-
tude is higher (or lower) than a given threshold value. Our
basic idea is to strengthen (or weaken) the synaptic weights
between synchronous (or asynchronous) neurons, which
may result in phase-domain segmentation. The synap-
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Fig. 1　 Network construction of segmentation model

tic weights are updated on the basis of symmetric spike-
timing dependent plasticity (STDP) using Reichardt’s cor-
relation neural network [6], which is suitable for analog
CMOS implementation.

In the following sections, we introduce our segmenta-
tion model and demonstrate the operations through numer-
ical simulations. Then we present unit CMOS circuits for
our model and demonstrate the operations using a simula-
tion program with integrated circuit emphasis (SPICE).

2. Model and Basic Operations

Our segmentation model is illustrated in Fig. 1. The
network hasN neural oscillators consisting of the Wilson-
Cowan type activator and inhibitor pairs (ui andvi) [7]. All
the oscillators are coupled with each other through resis-
tive synaptic connections, as illustrated in the figure. The
dynamics are defined by

τ
dui

dt
= −ui + fβ1(ui − vi) +

N∑

j 6=i

W uu
ij uj (1)
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Fig. 2　 Nullclines and trajectories of single neural oscillator

dvi

dt
= −vi + fβ2(ui − θi) +

N∑

j 6=i

W uv
ij uj (2)

where τ represents the time constant,N is the number
of oscillators, andθi the external input to thei-th oscil-
lator. Furthermore,fβi

(x) represents the sigmoid func-
tion defined byfβi

(x) = [1 + tanh(βix)]/2, W uu
ij is

the connection strength between thei-th andj-th activa-
tors andW uv

ij is the strength between thei-th activator,
and thej-th inhibitor. The nullclines of a single oscilla-
tor (W uu

ij = W uv
ij = 0) for different θ’s (0.1 and 0.5)

and trajectories forθ = 0.5 are shown in Fig. 2. The
remaining parameters were set atτ = 0.1, β1 = 5 and
β2 = 10. Models in which the dynamics are described by
Eqs. (1) and (2), are suitable for implementation in ana-
log very large scale integrations (VLSIs) because the sig-
moid function can be implemented in such VLSIs by using
differential-pair circuits.

According to the stability analysis in [7], thei-th os-
cillator exhibits excitable behaviors whenθi < Θ where
τ ¿ 1 andβ1 = β2 (≡ β), and whereΘ is given by

Θ = u0 − 2
β

tanh−1(2v0 − 1) (3)

u0 ≡ 1−
√

1− 4/β

2

v0 ≡ u0 − 2
β

tanh−1(2u0 − 1)

and the oscillator exhibits oscillatory behaviors whenθi ≥
Θ, if W uu

ij andW uv
ij for all i andj are zero.

Suppose that neurons are oscillating (θi ≥ Θ for all
i) with different initial phases. The easiest way to seg-
ment these neurons is to connect the activators belonging
to the same (or different) group with positive (or negative)
synaptic weights. In practical hardware; however, corre-
sponding neuron devices have to be connected by special
devices with both positive and negative resistive properties,
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Fig. 3　 Reichardt’s correlation neural network

which prevent us from designing practical analog circuits.
Therefore, we used positive synaptic weights between ac-
tivators and inhibitors and not negative weights. When the
weight between thei-th andj-th activators (W uu

ij ) is posi-
tive andW uv

ij is zero, thei-th andj-th activators are syn-
chronized. Contrarily, when the weight between thei-th
activator and thej-th inhibitor (W uv

ij ) is positive andW uu
ij

is zero, thei-th andj-th activators exhibit asynchronous
oscillation because thej-th inhibitor (synchronous to the
i-th activator) inhibits thej-th activator.

The synaptic weights (W uu
ij andW uv

ij ) are updated on
the basis of our assumption that one neural segment is rep-
resented by synchronous neurons and is asynchronous with
respect to neurons in the other segment. In other words,
neurons should be correlated (or anti-correlated) if they re-
ceive synchronous (or asynchronous) inputs. These corre-
lation values can easily be calculated by using Reichardt’s
correlation neural network [6], which is suitable for analog
circuit implementation [8]. The basic unit is illustrated by
thick lines and circles in Fig. 3(a). The unit consists of a
delay neuron (D) and a correlator (C). A delay neuron pro-
duces blurred (delayed) outputDout from spikes produced
by activatoru1. The dynamics are given by

d1
dDout

dt
= −Dout + u1 (4)

whered1 represents the time constant. The correlator ac-
ceptsDout and spikes produced by activatoru2 and outputs
Cout = Dout × u2. The conceptual operation is illustrated
in Fig. 3(b). Note thatCout qualitatively represents corre-
lation values between activatorsu1 andu2 becauseCout

is decreased (or increased) when∆t (inter-spike intervals
of the activators) is increased (or decreased). Since this
basic unit can be used to calculate correlation values only
for positive∆t, we used two basic units, which we call a
unit pair, as shown in Fig. 3(a). The output (U ) is thus
obtained for both positive and negative∆t by summing
the twoCouts. Through temporal integration ofU , we ob-
tained impulse responses of this unit pair. The sharpness
is increased asd1 → 0. Two impulse responses for small
and larged1 (red and blue curves) are plotted in Fig. 3(c).
Introducing two unit pairs with different time constants,
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Fig. 4　 STDP learning circuitry

i.e.,d1 andd2 (À d1), one can obtain the two impulse re-
sponses (U andV ) simultaneously. The weighted subtrac-
tion (U − αV ) produces well-known Mexican hat charac-
teristics, as shown in Fig. 3(d). We used this symmetric
characteristic for the weight updating as spike-timing de-
pendent plasticity (STDP) in the oscillator network.

A schematic of our learning circuitry is shown in Fig.
4. The two unit pairs are located between activatorsu1 and
u2. The weighted subtraction (U − αV ) is performed by
interneuronW . According to our above assumptions for
neural segmentation, whenU − αV is positive, the weight
between activatorsu1 andu2 (illustrated by a horizontal re-
sistor symbol in Fig. 4) is increased because the activators
should be correlated. On the other hand, whenU − αV is
negative, the weight between activatoru1 and inhibitorv2

(illustrated by a slant resistor symbol in Fig. 4) is increased
because activatorsu1 andu2 should be anti-correlated. To
this end, the output of interneuronW is given to two addi-
tional interneurons (fuu andfuv). The input-output char-
acteristics of these interneurons are shown in Figs. 4(a) and
(b). Namely,fuu (or fuv) increases linearly when positive
(or negative)U − αV increases but is zero whenU − αV
is negative (or positive). Those positive outputs (fuu and
fuv) are given to the weight circuit in order to modify the
positive resistances. The dynamics of the “positive” weight
between activatorsui anduj is given by

dW uu
ij

dt
= −W uu

ij + fuu (5)

and the “positive” weight between activatorui and in-
hibitor vj is given by

dW uv
ij

dt
= −W uv

ij + fuv (6)

time

u1

u2

u3

u4

u5

u6

0 20 40 60 80 100

sync

sync

async

Fig. 5　 Numerical simulation results
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Fig. 6　 Unit circuits for neural segmentation: (a) differential
amplifiers and (b) neural oscillator

We performed numerical simulations withN = 6,
τ = 0.1, β1 = 5, β2 = 10, d1 = 2, d2 = 0.1 andα = 1.2.
Time courses of activatorsui (i = 1 ∼ 6) are shown in
Fig. 5. Initially, the external inputsθi (i = 1 ∼ 6) were
zero (< Θ), but θi for i = 1 ∼ 3 and i = 4 ∼ 6 were
increased to 0.5 (> Θ) at t = 10 s and 20.9 s, respec-
tively. We observed thatu1∼3 andu4∼6 were gradually
desynchronized without breaking synchronization among
neurons in the same group, which indicates that segmenta-
tion of neurons on the basis of the input timing was suc-
cessfully achieved.

3. CMOS Unit Circuits and Operations

Our Wilson-Cowan based neural oscillators have been
implemented in [7]. The oscillator uses standard differen-
tial amplifiers shown in Fig. 6(a) which consists of a dif-
ferential pair (+ and -), a current mirror (m1 and m2), and
a bias transistor (m3). The construction of an entire neural
oscillator including additional capacitorC1 is illustrated in
Fig. 6(b). The simulated nullclines of a single neuron cir-
cuit for differentθs (0.5 V and 2.5 V) and trajectories for
θ = 2.5 V with C1 = 10 pF andVref = 2 V are shown
in Fig. 7. Transient simulation results of the neuron circuit
are shown in Fig. 8. Time courses of the activator (u) and
inhibitor (v) units are shown in (a) and (b), respectively. In
(a), θ was initially set at 0.5 V (in a relaxing state), andu
did not oscillate. Thenθ was increased to 2.5 V att = 0.1
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Fig. 8　 Simulation results of neural oscillator

ms, andu exhibited stiff oscillations. Again,θ was set at
0.5 V att = 0.3 ms. Sinceu had been excited before this
time, the neuron emitted one spike and then relaxed, as ex-
pected. In (b), withθ first set at 0.5 Vv did not oscillate.
Thenθ was increased to 2.5 V att = 0.1 ms, andv started
to oscillate. Again,θ was set at 0.5 V att = 0.3 ms. Since
v had been already excited the neuron emitted one spike,
but unless unitu the inhibitor unitv stayed at high level.

A circuit implementing Reichardt’s basic unit, which is
shown in Fig. 3(a), is shown in Fig. 9. For practical pur-
poses, we added two limiters that convert voltage pulses
of u1 andu2, which vary from 0 toVdd, into subthresh-
old current pulses. The bias currentI1 drives m4 and m5.
Transistor m6 is thus biased to generateI1 because m4 and
m6 share the gates. When m7 is turned on (or off) by ap-
plying Vdd (or 0) tou1, I1 is (or is not) copied to m8. Tran-
sistors m8 and m9 form a current mirror, whereas m9 and
m10 form a pMOS source-common (inverting) amplifier in
which the gain is increased asVb1 → 0. Since parasitic
capacitanceC2 is significantly amplified by this amplifier,
temporal changes ofu1 are blurred on the amplifier’s out-
put (Dout). Therefore, this “delayer” acts as a delay neu-
ron, as shown in Fig. 3(a). A correlator circuit consists of a
pMOS differential pair (m11 and m12) and a bias transistor
(m13). Whenu2 = Vdd (or zero),I2 is (or is not) copied to

Vb1
u

1
u

2

Vb2

Limiter1 Limiter2Delayer Correlator

I
out

m
4

m
5

m
7

m
6

m
8

m
9

m
13

m
14

m
12

m
11

m
16

m
18

m
17m

10

m
15

I
1

I
2

C
2

D
out

Fig. 9　 STDP circuit
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m13 through m15 to m18, as explained above. Therefore,
output currentIout is obtained only whenu2 = Vdd. Un-
der this condition,Iout is proportional toDout − Vb2 for
small |Dout − Vb2|. This operation corresponds to that of
a correlator in Fig. 3(a).

We carried out circuit simulations of the above circuits.
The parameter sets we used for the transistors were ob-
tained from MOSIS AMIS 1.5-µm CMOS process. Tran-
sistor sizes of m1, m2, m3, m13 and m14 were fixed at
L = 16 µm andW = 4 µm to construct accurate cur-
rent mirrors. The length and width of the resting transis-
tors were set at1.6 µm and4 µm, respectively. The supply
voltage was set at 5 V.

Simulation results of our STDP circuits are shown in
Figs. 10 and 11. In Fig. 10, ideal current pulses (am-
plitude: 100 nA, pulse width: 10 ms) were used instead
of limiters as shown in Fig. 9. ParametersC2, Vb1, and
Vb2 were set at 100 fF, -0.2 V, and 3.7 V, respectively.
The value ofVb2 was set at the intermediate value be-
tweenm11’s maximum and minimum gate voltage, and
this causes the differential pair’s output to vary the most.
The value ofVb1 was chosen so that the delayer makes
a reasonable delay. Horizontal axes (∆t) in Figs. 10 and
11 represent time intervals of input current pulses (spikes).
We integratedIout during the simulation and plotted nor-
malized values [(a) in Fig. 10]. Then we changed the value
of Vb1 to -2 V. The loweredVb1 reduced the drain current
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of m10 and increased the delay. Again,Iout was integrated
and normalized. The result is plotted [(b) in Fig. 10]. The
larger delay made the integratedIout converge to zero at a
larger∆t. By subtracting (b) from tripled (a), we obtained
half characteristics of STDP learning [(c) in Fig. 10]. In
Fig. 11, voltage pulses (amplitude: 5 V, pulse width: 10
ms) were applied tou1 andu2 in Fig. 9. ParametersC2

andVb2 were set at 5 pF and 3.7 V, respectively. The in-
tegratedIouts are plotted in Fig. 11(a) forVb1 = 0 and
Fig. 11(b) forVb1 = −0.04 V. The result was qualitatively
equivalent to the STDP characteristics shown in Fig. 3(d).

4. Conclusion

We developed a simple neural segmentation model that
is suitable for analog CMOS implementation. First, in-
stead of using negative weights required for anti-correlated
oscillation among different segments, we introduced pos-
itive connections between activators and inhibitors among
different neuron units. Second, we proposed a novel seg-
mentation method based on symmetric spike-timing de-
pendent plasticity (STDP). The STDP characteristics were
produced by combining Reichard’s correlation neural net-
works, which are suitable for analog CMOS implemen-
tation. Our proposed segmentation network was demon-
strated through numerical simulations. Basic circuits for
constructing segmentation hardware were developed and
evaluated. We showed that our circuit could produce sym-
metric STDP characteristics. A disadvantage of the model
is that neurons are all-to-all connected. The high number
of connections makes implementing the model on circuits
difficult. Hence, our next target includes reducing the num-
ber of connections, designing the complete segmentation
model, and implementing the network on CMOS VLSIs.
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