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Neuromorphic CMOS Circuits Implementing a Novel Neural Segmentation
Model Based on Symmetric STDP Learning
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We designed a simple neural segmentation model that is suitable for analog circuit implementation. The

model consists of excitable neural oscillators and adaptive synapses, where learning is governed by a symmetric spike-
timing dependent plasticity (STDP). We numerically demonstrated basic operations of the proposed model as well as
fundamental circuit operations using a simulation program with integrated circuit emphasis (SPICE).
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1. Introduction

Humans can distinguish multiple sensory sources that
coincide. Recent discoveries of synchronous oscillations
in the visual and auditory cortex have triggered much in-
terest in exploring oscillatory correlation in order to solve
neural segmentation problems. Many neural models that
perform segmentation have been proposed, [1-3], but they
are often difficult to implement on practical integrated cir-
cuits. Recently, a neural segmentation model called LE-
GION (Locally Excitatory Globally Inhibitory Oscillator
Networks) [4] has been attracting attention because it can
be easily implemented on circuits [5]. However, not in-
cluding learning of neurons, under certain conditions the
LEGION model does not work. For example, if one object
is in the presence of noise or shadow, even if neurons are
stimulated at the same time, segmentation occurs, resulting
in many different fragments. In other words, the LEGION
model fails to work in the presence of noise, This problem
is solved in our network by including learning as well as
all-to-all connections of neurons.

We have developed a simple neural segmenta-
tion model for analog complementary metal-oxide-
semiconductor (CMOS) circuits. It includes learning and
is suitable for applications such as figure-ground segmen-
tation and the cocktail-party effect, among others. The
model consists of mutually coupled neural oscillators ex-
hibiting synchronous (or asynchronous) oscillations. All
the neurons are coupled with each other through positive
or negative synaptic connections. Each neuron accepts ex-
ternal inputs such as sound inputs in the frequency domain,
and oscillates (or does not oscillate) when the input ampli-
tude is higher (or lower) than a given threshold value. Our
basic idea is to strengthen (or weaken) the synaptic weights
between synchronous (or asynchronous) neurons, which
may result in phase-domain segmentation. The synap-
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Fig. 10 Network construction of segmentation model

tic weights are updated on the basis of symmetric spike-
timing dependent plasticity (STDP) using Reichardt’s cor-
relation neural network [6], which is suitable for analog
CMOS implementation.

In the following sections, we introduce our segmenta-
tion model and demonstrate the operations through numer-
ical simulations. Then we present unit CMOS circuits for
our model and demonstrate the operations using a simula-
tion program with integrated circuit emphasis (SPICE).

2. Model and Basic Operations

Our segmentation model is illustrated in Fig. 1. The
network hasV neural oscillators consisting of the Wilson-
Cowan type activator and inhibitor pairs; @ndv;) [7]. All
the oscillators are coupled with each other through resis-
tive synaptic connections, as illustrated in the figure. The
dynamics are defined by

d’U,Z‘
dt

T

N
—u; + fp, (Ui — v;) + Z Witu; (1)
J#i
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Fig. 20 Nullclines and trajectories of single neural oscillator

dvi
dt

N
= —v;+ fa,(u; — 6;) + Z Wiu;  (2)
[y

where 7 represents the time constary, is the number
of oscillators, and); the external input to theé-th oscil-
lator. Furthermore f3, (x) represents the sigmoid func-
tion defined byfs, (v) = [1 + tanh(B;z)]/2, Wi" is
the connection strength between thth andj-th activa-
tors andW;3" is the strength between theth activator,
and thej-th inhibitor. The nullclines of a single oscilla-
tor (Wit = WY = 0) for different ¢’s (0.1 and 0.5)
and trajectories fo# = 0.5 are shown in Fig. 2. The
remaining parameters were setrat= 0.1, 5 = 5 and
B2 = 10. Models in which the dynamics are described by
Egs. (1) and (2), are suitable for implementation in ana-
log very large scale integrations (VLSIs) because the sig-
moid function can be implemented in such VLSIs by using
differential-pair circuits.

According to the stability analysis in [7], theth os-
cillator exhibits excitable behaviors whéhn < © where
T < 1landg; = B, (= B), and where is given by

2
© = wug— 3 tanh ™' (2vg — 1) (3)
1-/1-4/8
u = ——"
2
2
v9 = U — 3 tanh™ " (2ug — 1)

and the oscillator exhibits oscillatory behaviors witen>
O, if Wi andW ;2" for all i and; are zero.
Suppose that neurons are oscillatig & © for all
1) with different initial phases. The easiest way to seg-
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Fig. 30 Reichardt’s correlation neural network

which prevent us from designing practical analog circuits.
Therefore, we used positive synaptic weights between ac-
tivators and inhibitors and not negative weights. When the
weight between thé-th and;-th activators ;") is posi-

tive andW3" is zero, thei-th andj-th activators are syn-
chronized. Contrarily, when the weight between ik
activator and thg-th inhibitor (W;5") is positive and/V ;7"

is zero, thei-th andj-th activators exhibit asynchronous
oscillation because thgth inhibitor (synchronous to the
i-th activator) inhibits thg-th activator.

The synaptic weightsi{;;* andW;5") are updated on
the basis of our assumption that one neural segment is rep-
resented by synchronous neurons and is asynchronous with
respect to neurons in the other segment. In other words,
neurons should be correlated (or anti-correlated) if they re-
ceive synchronous (or asynchronous) inputs. These corre-
lation values can easily be calculated by using Reichardt’s
correlation neural network [6], which is suitable for analog
circuit implementation [8]. The basic unit is illustrated by
thick lines and circles in Fig. 3(a). The unit consists of a
delay neuron (D) and a correlator (C). A delay neuron pro-
duces blurred (delayed) outpik,,; from spikes produced
by activatoru;. The dynamics are given by

dDout

d
Yt

= _Dout + up (4)
whered; represents the time constant. The correlator ac-
ceptsD,,; and spikes produced by activatorand outputs
Cous = Dout X uo. The conceptual operation is illustrated
in Fig. 3(b). Note that’,,; qualitatively represents corre-
lation values between activators andu, because’,

is decreased (or increased) whén (inter-spike intervals

of the activators) is increased (or decreased). Since this
basic unit can be used to calculate correlation values only
for positive At, we used two basic units, which we call a
unit pair, as shown in Fig. 3(a). The outpudf)(is thus
obtained for both positive and negativet by summing

ment these neurons is to connect the activators belonging the twoC,,s. Through temporal integration of, we ob-

to the same (or different) group with positive (or negative)
synaptic weights. In practical hardware; however, corre-

tained impulse responses of this unit pair. The sharpness
is increased ag; — 0. Two impulse responses for small

sponding neuron devices have to be connected by special and larged; (red and blue curves) are plotted in Fig. 3(c).

devices with both positive and negative resistive properties,

Introducing two unit pairs with different time constants,



@ [
1

o 1
| U-aV
| (b) Juv
; 1
10
| U-aVv

Fig. 40 STDP learning circuitry

i.e.,d; anddy (> d1), one can obtain the two impulse re-
sponsesl{ andV)) simultaneously. The weighted subtrac-
tion (U — oV') produces well-known Mexican hat charac-
teristics, as shown in Fig. 3(d). We used this symmetric
characteristic for the weight updating as spike-timing de-
pendent plasticity (STDP) in the oscillator network.

A schematic of our learning circuitry is shown in Fig.
4. The two unit pairs are located between activatqrand
uz. The weighted subtractiod/( — oV) is performed by
interneuroni?/. According to our above assumptions for
neural segmentation, whénh— o'V’ is positive, the weight
between activators,; andus (illustrated by a horizontal re-
sistor symbol in Fig. 4) is increased because the activators
should be correlated. On the other hand, wher oV is
negative, the weight between activatgrand inhibitoruv,
(illustrated by a slant resistor symbol in Fig. 4) is increased
because activators; andus should be anti-correlated. To
this end, the output of interneurd#i is given to two addi-
tional interneuronsf{,, and f,). The input-output char-

acteristics of these interneurons are shown in Figs. 4(a) and

(b). Namely,f, (or fuv) increases linearly when positive
(or negative)) — oV increases but is zero whéh— oV

is negative (or positive). Those positive outpufs,.(and
fuv) are given to the weight circuit in order to modify the
positive resistances. The dynamics of the “positive” weight
between activators; andu; is given by

dwp
dt

= _Wi‘;’u + fuu (5)

and the “positive” weight between activate; and in-
hibitor v; is given by
dW}iY
dt

= Wi + fuv (6)
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Fig. 50 Numerical simulation results

Fig. 60 Unit circuits for neural segmentation: (a) differential
amplifiers and (b) neural oscillator

We performed numerical simulations witN 6,
7=0.1, 51 =5,0,=10,dy =2,dy =0.1 anda = 1.2.
Time courses of activators; (i = 1 ~ 6) are shown in
Fig. 5. Initially, the external input8; (i = 1 ~ 6) were
zero K ©), butg; fori =1 ~ 3 andi = 4 ~ 6 were
increased to 0.5 ©) att = 10 s and 20.9 s, respec-
tively. We observed that; .3 anduy.¢ were gradually
desynchronized without breaking synchronization among
neurons in the same group, which indicates that segmenta-
tion of neurons on the basis of the input timing was suc-
cessfully achieved.

3. CMOS Unit Circuits and Operations

Our Wilson-Cowan based neural oscillators have been
implemented in [7]. The oscillator uses standard differen-
tial amplifiers shown in Fig. 6(a) which consists of a dif-
ferential pair (+ and -), a current mirror ¢nand ny), and
a bias transistor (g). The construction of an entire neural
oscillator including additional capacit@f, is illustrated in
Fig. 6(b). The simulated nullclines of a single neuron cir-
cuit for differentés (0.5 V and 2.5 V) and trajectories for
0 = 2.5V with C; = 10 pF andV,s = 2 V are shown
in Fig. 7. Transient simulation results of the neuron circuit
are shown in Fig. 8. Time courses of the activatgrgnd
inhibitor (v) units are shown in (a) and (b), respectively. In
(a), 0 was initially set at 0.5 V (in a relaxing state), and
did not oscillate. Theld@ was increased to 2.5V at= 0.1
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Fig. 80 Simulation results of neural oscillator

m; 3 through ms; to myg, as explained above. Therefore,
output current/,,;, is obtained only whems, = V34. Un-
der this condition /., is proportional toD.,; — V4,2 for

ms, andu exhibited stiff oscillations. Againj was set at k i
small| Dot — Vi2|. This operation corresponds to that of

0.5V att = 0.3 ms. Since: had been excited before this

time, the neuron emitted one spike and then relaxed, as ex- & Correlator in Fig. 3(a). . o
pected. In (b), withd first set at 0.5 W did not oscillate. We carried out circuit simulations of the above circuits.

Then6 was increased to 2.5 V at= 0.1 ms. and started The parameter sets we used for the transistors were ob-
to oscillate. Againg was set at 0.5 V at= 0.3 ms. Since tained from MOSIS AMIS 1.5:m CMOS process. Tran-

v had been already excited the neuron emitted one spike, SIStor sizes of m my, ms, mi3 and m, were fixed at

but unless unit: the inhibitor unitv stayed at high level. L =16 pm andW' = 4 um to construct accurate cur-
A circuit implementing Reichardt’s basic unit, whichis ~ "€nt mirrors. The length and width of the resting transis-

shown in Fig. 3(a), is shown in Fig. 9. For practical pur- {Ors were setak.6 um and4 um, respectively. The supply
poses, we added two limiters that convert voltage pulses Voltage was setat5 V. o _
of u; andus, which vary from 0 toV4, into subthresh- Simulation results of our STDP circuits are shown in
old current pulses. The bias currditdrives m and m. Figs. '10 and 11. In Fig. 19’ ideal current pulses (am-
Transistor rg is thus biased to generatebecause mand plitude: 100 nA, pulse width: 10 ms) were used instead
mg share the gates. Whenris turned on (or off) by ap- of limiters as shown in Fig. 9. Parameters, V1, an_d
plying Vyq (or 0) tow,, I is (or is not) copied to m Tran- V42 were set at 100 fF, -0.2 V, a_nd 3.7 V respectively.
sistors m and my form a current mirror, whereasgrand The value ofVy was set at thg intermediate value be-
My, form a pMOS source-common (inverting) amplifierin ~ tWeenmi,'s maximum and minimum gate voltage, and
which the gain is increased &, — 0. Since parasitic this causes the differential pair's output to vary the most.
capacitance, is significantly amplified by this amplifier, ~ The value ofl;,, was chosen so that the delayer makes

temporal changes of, are blurred on the amplifier's out- @ reasonable delay. Horizontal axest) in Figs. 10 and
put (Dout). Therefore, this “delayer” acts as a delay neu- 11 represent time intervals of input current pulses (spikes).

ron, as shown in Fig. 3(a). A correlator circuit consists ofa e integrated’,,,; during the simulation and plotted nor-
pMOS differential pair (m; and m») and a bias transistor malized values [(a) in Fig. 10]. Then we changgd the value
(M13). Whenus = Viq (Or zero), I is (or is not) copied to of Vj, to -2 V. The lowered}; reduced the drain current
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Fig. 110 Symmetric STDP characteristics with limiters

of myg and increased the delay. Agaify,; was integrated
and normalized. The result is plotted [(b) in Fig. 10]. The
larger delay made the integratéd,; converge to zero at a
largerAt. By subtracting (b) from tripled (a), we obtained
half characteristics of STDP learning [(c) in Fig. 10]. In
Fig. 11, voltage pulses (amplitude: 5 V, pulse width: 10
ms) were applied ta; andus in Fig. 9. Parameter€’,
and V2 were set at 5 pF and 3.7 V, respectively. The in-
tegrated/,+s are plotted in Fig. 11(a) fov; = 0 and
Fig. 11(b) forV}; = —0.04 V. The result was qualitatively
equivalent to the STDP characteristics shown in Fig. 3(d).

4. Conclusion

We developed a simple neural segmentation model that
is suitable for analog CMOS implementation. First, in-
stead of using negative weights required for anti-correlated
oscillation among different segments, we introduced pos-
itive connections between activators and inhibitors among
different neuron units. Second, we proposed a novel seg-
mentation method based on symmetric spike-timing de-
pendent plasticity (STDP). The STDP characteristics were
produced by combining Reichard’s correlation neural net-
works, which are suitable for analog CMOS implemen-
tation. Our proposed segmentation network was demon-
strated through numerical simulations. Basic circuits for
constructing segmentation hardware were developed and
evaluated. We showed that our circuit could produce sym-
metric STDP characteristics. A disadvantage of the model
is that neurons are all-to-all connected. The high number
of connections makes implementing the model on circuits
difficult. Hence, our next target includes reducing the num-
ber of connections, designing the complete segmentation
model, and implementing the network on CMOS VLSis.
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