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Abstract

We propose a neuromorphic single-electron structure that performs edge detection in incident images.

Edge detection is a primary function carried out in the vertebrate retina. Several edge-detecting circuits based on a
well studied model of edge detection in the vertebrate retina have been proposed and implemented with CMOS LSIs
[1] - [3]. In this paper, based on the same model, we propose a possible single-electron architecture and show that it
can detect or enhance edges in incident images. We constructed one- and two-dimensional artificial retinas with the
proposed subcircuits and confirmed their basic operation through Monte-Carlo based computer simulations.
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1. Introduction

Over the past three decades, achieving faster and more ef-
ficient electronic systems has been realized though minia-
turization of the transistor. With the present device pro-
cessing technologies, the transistor sizes have shrunk to the
two-digit nano meter scale making transistors vulnerable to
“nano-scale” physical characteristics. At the same time, im-
provements in device fabrication technologies have made it
possible to fabricate quantum devices, such as single-electron
devices.

Single-electron circuits can be considered as highly func-
tional units both in digital and analog computational systems
[4] because they inherently operate with extreme low power
dissipation, and provide a high integration density per unit
area. Thus far, a number of single-electron circuits , based
on conventional Boolean circuit architectures have been pro-
posed [5]. However, the reliability of Boolean-based architec-
ture schemes remains questionable due to the non-uniformity
of single units, the low number of electrons representing unit
logic bits, and low tolerance against environmental noises.
A possible method toward solving these drawbacks could be
attained by employing neuromorphic-based circuit architec-
tures in creating single-electron circuits. Despite that, in-
dividual biological neurons are sensitive to noises (low de-
fect tolerance), operate asynchronously due to structural dif-
ferences, and have enormous time jitters in signal transmis-
sion [8] - [7], their networks are robust to external interfer-
ence, and successfully process information (see [13] - [15]
and references therein). Therefore, with hints from neuronal
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information processes, we could find a breakthrough to the
shortcomings facing electronic circuits consisting of single-
electron devices.

Electrical circuits that are designed by mimicking compu-
tational structures in living organisms—neuromorphic circuits,
would provide insights into developing even more efficient
processors for parallel information processing applications
[16]. As an example of neuromorphic systems, edge detect-
ing LSIs have been extensively studied [1]. Edge detection
is a primary function in the early stages of visual process-
ing carried out in the vertebrate retina. Thus far, only neu-
romorphic circuits achieved with silicon have been designed
and fabricated [1] - [3]. In this work, we propose a pos-
sible image-processing structure for single-electron circuits
as an example toward linking nano-electronic devices with
neuromorphic architectures. Based on a well studied model
of the vertebrate inner retina, this paper proposes a single-
electron circuit that detects edges, and investigates its basic
operations.

In the sections that follow, we will start by explaining the
model, then give details on how to implement it with single-
electron devices. Finally, we give details on the operation of
our circuit with one- and two-dimensional circuit construc-
tions.

2. The model

The vertebrate retina consists of massively interconnected
neural cells in a hierarchical structure, where edge detection
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Fig. 1 Cross section of the vertebrate retina,

showing neurons involved in edge detec-
tion: (a) Model: P—Photoreceptors, H—
Horizontal cells, and B—Bipolar cells.
(b) Intensity profile of incident light and
(c) Potentials of P, H, and B cells, show-
ing response to the incident light (input)

is carried out mainly through three types of cells: (i) photore-
ceptors that transduce light inputs into electrical signals, (ii)
horizontal cells that receive inputs from the superjacent layer
of photoreceptors and produce spatially averaged outputs in
relation to the inputs, and (iii) bipolar cells that produce the
difference in amplitudes between the outputs of photorecep-
tors and horizontal cells. The schematic model is shown in
Fig. 1(a) . In this model, we assume that illuminated (or non-
illuminated) photoreceptors produce low (or high) potentials
(Figs. 1(b) and (c)-P). The outputs are spatially averaged by
horizontal cells (Fig. 1(c)-H). The bipolar cells detect the po-
sition of edges in the incident images by producing the dif-
ference in amplitudes between photoreceptors and horizontal
cells. This is obtained by subtracting “H” - from their corre-
sponding “P”-values in bipolar cells. Therefore, the non-zero
outputs of bipolar cells represent the positions of edges in the
input image (Fig. 1(c)-B).

3. Implementation with Single-Electron Devices

In this section we propose a neuromorphic architecture, based
on the retinal model above, with single-electron oscillators.
We start by giving details on how to realize the constitutive el-
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Fig. 2 Single electron oscillator: (a) Circuit
configuration (b) Monostable, or one-
shot, operation of positively biased (solid
curve) and negatively biased (dashed
curve) oscillators

ements, i.e., photoreceptors, horizontal and bipolar cells with
single electron devices, and then explain the configuration of
a unit pixel circuit.

3.1 Single-electron oscillator

The proposed circuit is implemented with single-electron os-
cillators. A single-electron oscillator, shown in Fig. 2(a), is a
simple circuit consisting of a tunneling junction C; and high
resistance R connected in series at the node () and biased
with a positive voltage Vyq (Fig. 2(a)) or a negative voltage
— Vaa - It operates as a relaxation oscillator at low tempera-
tures at which the Coulomb-blockade effect takes place. The
oscillator is astable if the bias voltage Vag > e/ (2C;j) (e is
the elementary charge) and monostable if Vyq < e/ (2C;)
(see [19] - [18] for a detailed explanation). The node volt-
age of the monostable oscillator is equal to the bias voltage
in an equilibrium state, and no change occurs under that con-
dition. Upon application of an external trigger signal, such
as incidence of photons, the Coulomb blockade is broken off,
and electron tunneling occurs through the tunneling junction.
The node voltage of a positively biased oscillator drops by
e/C i, because of tunneling from the ground to the node, then
gradually increases to return to Vyq as junction capacitance
Cj is charged through resistance R (Fig. 2(b)-solid curve).
In a negatively biased oscillator, the node voltage jumps by
e/C j because of tunneling from the node to the ground, and
then gradually decreases to return to — Vyq (Fig. 2(b)-dashed
curve).
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3.2 Photoreceptor circuit

Photoreceptors convert incident light inputs into electrical
signals. We implement a retinal photoreceptor with a posi-
tively biased monostable oscillator that is triggered by exter-
nal light inputs. In the absence of external inteference (ther-
mal or incoming photons) the node voltage of the oscillator is
stable (and equivalent to the bias voltage). If a photon (light)
is illuminated on the nano-dot, photo-induced charging ef-
fect ([20],[21]) occurs and an electron tunneling is induced
from the ground to the nano-dot across the tunneling junc-
tion. Therefore the oscillator changes its node voltage from
positive to negative. Since the intensity of input light is pro-
portional to the number of incident photons, the number of
tunneling and recharging events also increase. Therefore the
intensity of incoming light would correspond to the average
tunneling rate in the photoreceptors. To realize the photore-
ceptor layer, we use a single oscillator for a single photore-
ceptor cell.

3.3 Horizontal cell circuit

The horizontal cell layer receives inputs from the superjacent
layer of photoreceptors to produce a spatially averaged out-
put. The horizontal cells are implemented with negatively
biased single-electron oscillators. Fig. 3 shows the configura-
tion of the horizontal cell layer. The extensive gap junctions
in the retinal cells are emulated by a resistive-coupling, re-
alized through resistor Ry, between neighboring horizontal
oscillators. If tunneling takes place in one of the horizontal
cell circuits, from the node to the ground, the node voltage
of the corresponding oscillator changes from a low to a high
value. Through this resistive coupling, the excess negative
charge is redistributed to neigboring horizontal cells, reduc-
ing their node voltages. The change in the node voltage is
inversely proportional to the spatial distance from the tunnel-
ing cell: oscillators nearest to the tunneling cell experience a
higher drop in their node voltages, and therefore have a higher
probability of tunneling than those positioned further. Thus,
the average tunneling rate decreases with the spatial distance
from the tunneling cell. Therefore, negatively biased oscil-
lators coupled through resistances would produce a spatially
weighted output in relation to the input from superjacent pho-
toreceptor cells.

34 Bipolar cell circuit

Bipolar cells detect the position of edges by producing the
difference in the amplitude of corresponding photoreceptors
and horizontal cells. In conventional silicon retinas, this
could be realized with an operational amplifier or current sub-
traction method. To implement a similar architecture with
single-electron devices, we would require a complicated cir-
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Fig. 3 Configuration of the horizontal cell layer:
A single horizontal cell is implemented
with a negatively biased oscillator, while
the junction gaps are emulated through
resistive coupling realized with resistor
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Fig. 4 Conceptual configuration of bipolar cells:
Neural excitation and inhibition

cuit. We therefore, qualitatively imitated the subtractive func-
tions of the bipolar cells through neural shunting inhibition
mechanism.

This mechanism is illustrated in Fig. 4. We consider a con-
figuration in which the photoreceptors (P) produce an exci-
tatory signal, while the horizontal cells (H; and H;) produce
an inhibitory signal toward "D cells. If the excitatory signal
surpasses the inhibitory signal in amplitude, it triggers cell
”D” to tunnel (excitation). Otherwise, cell ”D” would be re-
strained from tunneling (shunting inhibition).

These two mechanisms can be achieved with single-
electron devices through capacitive couplings [22]-[24]. An
excitatory coupling is achieved by connecting a positively (+)
biased oscillator to one that is negatively (-) biased. In the
absence of an external input, the oscillator node takes a volt-
age value equivalent to the bias voltage. If tunneling occurs
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Fig. 5 Realizing the bipolar circuit: Neural exci-
tation and inhibition with single-electron
circuits

in the positive oscillator, through the capacitive coupling, the
negative charge leads to a drop in the node potential of the
coupled negative oscillator below its threshold, thus inducing
it to tunnel. Shunting inhibition is realized by applying the
same bias voltage to two coupled oscillators. For example,
if the two are positively biased, tunneling in either of them
leads to a drop in the node voltage of the other far below the
threshold, thus restraining it from tunneling (inhibition) even
in the presence of an external trigger input.

Fig. 5 shows fundamental circuits for neural excitation and
inhibition with single-electron oscillators. Let us assume that
electron tunneling occurred in ”P”. This triggers a signal flow
along the middle branch: electron tunneling in ”P” leads to a
drop in the node voltage of B; below its threshold (thus in-
ducing it to tunnel). B; in turn induces tunneling in B3, and
tunneling in 0" is consequently induced (excitation). On
the other hand if tunneling takes place in cells H; and H;, this
triggers subsequent tunneling in the left and right branches.
Tunneling in By and B, decreases the node voltage of Bj
restraining it from tunneling (shunting inhibition)—in other
words, tunneling in "H” cells blocks excitatory signals ini-
tiating from “P” in the middle branch. If tunneling occurs
in either of the "H” cells, this would not have a sufficiently
large inhibitory effect on B3, and the probability of electron
tunneling taking place (tunneling rate) would be higher than
that in the previous case. With these excitatory and inhibitory
configurations, we partly imitate the subtractive functions of
bipolar cells.

3.5 Configuration of a unit pixel

The edge detecting circuit is constructed with ”P”, "H”, and
”B” blocks, proposed in the preceding section. The config-
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Fig. 6 Configuration of a unit pixel of the edge
detecting circuit consisting of "P”, "H”,
and ”B” circuit blocks

uration of a unit pixel is shown in Fig. 6. To increase the
inhibitory effect of the horizontal cell layer, additional exci-
tatory coupling was introduced between B » and B; .

4. Simulation Results

To confirm the basic operation, we constructed (i) a one-
dimensional array retinal-circuit consisting of 100 pixel cir-
cuits, and (ii) a two-dimensional retinal-circuit consisting of
100 x 100 pixel circuits. We carried out Monte-Carlo based
simulations: transient responses of the ”P”,”H”, and "B” cell
circuits, edge responses, sensitivity to light intensity, Mach
bands and evaluated signal to noise ratio (SNR) with tempera-
ture, to confirm their basic operations. In the simulations, the
horizontal layer gap junction was simulated with a resistance
Ry =400 MQ, excitatory and inhibitory capacitive coupling
with a capacitance of 2 aF, tunneling junction capacitance Cj,
series resistance R, and tunneling junction conductance were
set to 10 aF, 100 MQ, and 1 uS respectively. The simulation
time was 700 ns.

4.1 One-dimensional array circuit

The projected image is shown in Fig. 7. The dark region
shows non-illuminated regions of the array, while the un-
shaded region (pixels 33-67) represents uniformly illumi-
nated photoreceptors.

Light input was simulated by applying an external trigger
input (whose frequency is equivalent to the intensity of the
input light) to corresponding photoreceptors. In this simula-
tion, the applied trigger frequency and amplitude were set to
110 MHz, and 2.5 mV respectively.

Journal of Signal Processing, Vol. 13, No. 2, March 2009



Fig. 7 Binary image projected onto the one-
dimensional retinal circuit

4.1.1 Transient responses

Fig. 8 shows the time-course responses of photoreceptors,
horizontal and bipolar cell circuits. Fig. 8(a) shows the re-
sponse of the 50th photoreceptor circuit. The photoreceptor
receives a series of trigger signals, which induce it to tunnel
from a high to a low voltage, followed by recharging to re-
peat the same cycle. We refer to each of these cycles as a fir-
ing event. The light intensity is computed by calculating the
average firing rate of each photoreceptor circuit. Fig. 8(b)
shows the response of the 50th cell of the subjacent horizon-
tal cell layer. As mentioned in the previous section, due to the
averaging effect of gap junctions, the firing rate of horizon-
tal cell circuits is somewhat lower than that of corresponding
photoreceptor circuits. Figs. 8(c) and (d) show the responses
of the 50tk (middle of the illuminated region) and 33rd (left
edge) bipolar cell circuits respectively. Note that the firing
rate of circuits within the illuminated region (Fig. 8:(c)) is
not zero, however, it is extremely low compared to the edge
cells. The simulations were carried out at T =0 K.

4.12 Edge response

Figs. 9(a), (b) and (c) correspond to the average tunneling
rates for photoreceptors, horizontal and bipolar cell layers.
The vertical axes are normalized by the maximum average
firing rate in the photoreceptor layer. As mentioned in the
preceding section, the average firing rate of the horizontal
cells is somewhat lower than that of the photoreceptors. The
image edges correspond to the high firing positions of the
bipolar cell circuit. However, the firing rates of bipolar cells
within the illuminated region have a comparatively low non-
zero output.

4.1.3 Sensitivity to light intensity

The firing rate of photoreceptors would be proportional to the
intensity of input light (section 3.2). To simulate the response
of our circuit to various light intensities, we altered the fre-
quency of the applied input pulse trigger, and computed the
average tunneling rates of bipolar cells. The results are shown
in Fig. 10. The maximum response frequency was 110 MHz,
determined by the minimum charging period within ”P”, ”H”,
and "B” cell layer oscillators.
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Fig. 8 Transient responses of constitutive circuit

cells: (a) Photoreceptors, (b) Horizontal
cells, (c), and (d) Bipolar cell circuits. (c)
shows the response of bipolar cells in the
middle of illuminated region, while (d)
shows response of those in the edges of
the illuminated region. The simulation
temperature T =0 K
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Fig. 9 Response to input images: (a) Average
firing rate for photoreceptors—input, (b)
Average firing rate for horizontal cells,
and (c) Average firing rate of bipolar
cells—output (T =0 K)

4.1.4 Mach bands

Mach bands are defined as illusory light or dark bands that
appear when a spatial ramp in light intensity (in projected
images) abruptly changes slope [1],[25] . To confirm the
Mach-band response of our circuit, the ramp input shown in
Fig. 11(a) was fed to the photoreceptor layer. The input was
simulated by setting the frequency of the input trigger sig-
nal at 10MHz for photoreceptors between nodes 0 and 33,
ramp increment between nodes 33 and 67 from 10 MHz to
110 MHz and a constant frequency of 110 MHz for nodes 68-
99. The response of the bipolar cell circuit layer (output) is
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shown in Fig. 11(b). The vertical axis is normalized by the fir-
ing rate for maximum light intensity (frequency = 110MHz).
The circuit could detect the abrupt change in slope of input
light intensity. This is shown in Fig. 11(b)-"peak”, at node
positions ”33” and 767”.

4.1.5 Temperature characteristics

The temperature characteristics were evaluated by computing
the circuit’s ability to detect edges with increasing tempera-
tures. Figs. 12 (a)-(c) show edge responses at T=0 K, T =
10 K, and T= 20 K respectively. The vertical axes are nor-
malized by the maximum firing rate in the bipolar cell layer
at T = 0 K. As the temperature increases, the overall tunnel-
ing rates within the circuit increase, leading to a decrement
in its ability to detect edges. The ability to detect edges was
evaluated as the peak signal to noise ratio (PSNR). To evalu-
ate the overall performance against temperature, the PSNR is
defined as:

PSNR =

) (M

MSE

1 N -1
v 2 (Fol) = fr()?
i=0

where, f i 1S the average firing rate for the entire bipolar
circuit at room temperature, MSE is the mean square error,
fo(i) is the firing rate of the ith node of the bipolar circuit at
zero temperature (i.e., the ideal output), and fr (7) is the fir-
ing rate for the ith node of the bipolar circuit at temperature
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TK,and N = 100. The MSE at each temperature was cal-
culated by averaging five runs. The firing rate f ,x was 8.33,
normalized by the maximum firing rate at 0 K.

Fig. 13 shows the PSNR over a temperature range between
0 and 50 K. The circuit could detect edges with a contrast
ratio of 23 dB at T = 5 K. This is presumed to be low in
comparison to the capacity of the vertebrate retina, (and other
electronic systems) in the range of 20 - 40 dB at higher tem-
peratures. This could be attributed to the fact that besides
inhibitory mechanisms, there could be other mechanisms in-
volved in edge detection in actual retinas, as compared to our
circuit that only modeled inhibition mechanisms [27]-[26].
These could also include stochastic resonance [29], [30], ag-
gregating and thresholding mechanisms together with higher-
level visual information processes found in biological sys-
tems. Therefore, we think that the PSNR of our circuit could
be improved if we were able to incorporate all these mecha-
nisms. A possible architectural approach that could be used
to improve performance against temperature, hence PSNR in
the proposed circuit, is discussed in section 5.2.

4.2 Two-dimensional array circuit

The two-dimensional array was constructed with 100x 100
pixel circuits. Fig. 14 shows a schematic top view of the cir-
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Fig. 12 Edge detection at sample temperatures:
(a) Temperature T = 0 K, (b) Tempera-
ture T = 10 K, and (c) Temperature T =
20K

cuit. Each photoreceptor cell is capacitively coupled to four-
horizontal cells in the subjacent horizontal layer. Each of the
horizontal cells is resistively coupled to its four adjacent cells
in the horizontal layer. Similarly, each of the bipolar cells is
capacitively coupled to corrresponding cells in the neighbor-
ing four-pixels.

4.2.1 Edge response

To confirm the operation of the two-dimensional circuit, a
34 x 34 pixel sized window was projected into the middle
of the array circuit. The response is shown in Fig. 15. The
photoreceptors receive light inputs to produce a high firing
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Fig. 13 Edge detection capacity (peak signal to
noise ratio) for T=0-50 K

Fig. 14 Schematic of the two-dimensional cir-
cuit configuration, showing positions of
photoreceptor and horizontal cells

rate (Fig. 15(a)). The horizontal cell layer response is shown
in (b), while the bipolar cell output is shown in (c). We could
successfully detect edges in the projected image.

422 Temperature characteristics

To analyse temperature characteristics of this circuit, we con-
sider the cross section along A-B, in the middle of the in-
put image (Fig. 16). Point ”A” was taken as node number 0,
while B as node number 99. The ability of the circuit to detect
edges was analyzed by computing the average tunneling rates
of bipolar cells along this cross section. The results are shown
in Fig. 17, for T=0K, 5 K, and 10 K for (a), (b) and (c) re-
spectively. The vertical axis is normalized by the maximum
average firing rate of bipolar cell circuits at T =0 K. The firing
rates for all bipolar cells increase with temperature. The per-
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(c)

Fig. 15 Response of (a) Photoreceptors, (b) Hor-
izontal cells, and (c) Bipolar cells to in-
cident image (T = 0 K)

formance of the circuit in detecting edges in projected images
over a temperature range of O - 20 K is shown in Fig. 18. The
vertical axis represents the peak signal-to-noise ratio (PSNR)
defined as:

f max

PSNR = 20logio( «/l\ﬁ) 2)
1 N-1N-1
MSE = m;f;wum—mnmz

where, f hax is the average firing rate for the entire bipolar
circuit at room temperature, MSE is the mean square error,
fo(i,j ) is the firing rate for the [i,j ]Jth node of the bipolar
circuit at zero temperature (i.e. the ideal output), and f (7,j )
is the firing rate for the [i,j Jth node of the bipolar circuit at
temperature T K, and N = 100. The MSE was obtained by
averaging five runs at each temperature. The firing rate f ,«
was 11.36, normalized by the maximum firing rate for the
bipolar cell layer at 0 K.

423 Edge enhancement in a gray image

Fig. 19 shows the edge computation results of a 100x 100
sized gray image projected onto the two-dimensional circuit.
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0 99

Fig. 16 Schematic diagram showing cross sec-
tion ”"A-B” along which temperature
characteristics were analyzed.

Fig. 19(a) is the input image. The dark region represents non-
illuminated pixels of the array. The coloring in (b), and (c)
corresponds with firing rates of the oscillators, with the dark
coloring representing a zero firing rate, and the white repre-
senting a high firing rate. The edge detection results at T =0
K,and T =5 K are shown in Figs. 19(b) and (c) respectively.
As the temperature increases, the firing rate of the entire the
circuit increases. This is indicated by the grayish background
in Fig. 19(c). This would increase with temperature, leading
to a low edge extraction capacity.

5. Discussions

5.1 Device fabrication

Toward fabricating the proposed device, we need to address
two issues. The first is controlling the position of single units
(nano-dots) and fabricating the local capacitive couplings be-
tween neighboring nano-dots in the array. The second is how
to fabricate large resistances on top of minute nano-dots to
form single-electron oscillators. The first problem of con-
trolling the positions of individual nano-dots could be solved
as explained by one of the authors in [31], through self-
organized crystal growth based on selective-area metalor-
ganic vapor-phase epitaxy (details on the fabrication process
are given in [32] and [33]). To construct single-electron os-
cillators, we would require a large resistance. Instead of con-
ventional resistors, a series of tunneling junctions, i.e., multi-
tunneling junction structures, could be used instead[22], and
can be fabricated with the same method.

5.2 Improving temperature performance

Stochastic resonance is a phenomenon where weak signals
can be retrieved from a noisy output [35],[34] by applying
an optimal ammount of random noise. Single-electron de-
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along cross section A-B at smple tem-
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vices are sensitive to thermal noises. As shown in our re-
sults, the probability of random electron tunneling (firing)
rises as the temperature increases, degrading the capacity of
edge detection. One method of improving the circuit per-
formance in relation to temperature is to utilize these ther-
mally induced noises (random tunneling events). Living or-
ganisms are immune against noise in information processing;
they effectively process information even in noisy environ-
ments [29],[30]. It is presumed that one of the ways they are
able to do so is by exploiting stochastic resonance (SR) [36].
Oyaeet al., [37] proposed a single-electron neural network and
demonstrated its improved temperature performance by em-
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Fig. 18 Edge detection capacity (PSNR) over a
temperature range of T=0-20 K

Fig. 19 Edge detection results for gray image:
(a) Input image, (b) and (c): Edge de-
tection results at T=0 K (b),and T =5
K (c)

ploying SR in detecting output signals. This was achieved
by setting the input signal to a value lower than the tunnel-
ing (firing) threshold of the neurons. By applying thermal
noises, neurons with non-zero inputs were thermally induced
to tunnel —tunneling events were synchronized with the in-
put signal to a certain quantity of thermal noises. They found
that the neuron performance against noises was enhanced
through partially using thermal noises. We could use the same
method in our edge-detecting circuit, where a number of cir-
cuit blocks would be fed with the same input. After each
of the blocks processes the input image, their outputs would
be summed to produce the overall output. Through this pro-
cess, we could be able to successfully carry out edge detection
with improved performance at higher temperatures. There-
fore, applying the SR phenomenon to the proposed circuit
would enhance temperature performance, hence increased
PSNR against thermally induced noise, without an immedi-
ate need to find a solution through fabrication techniques.
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6. Conclusion

Toward creating neuromorphic architectures with nano-
electronic devices, we proposed a single-electron circuit
that can detect edges in incident images. Based on a
well studied retinal model, we implemented the model with
single-electron devices, and confirmed its basic performance
through Monte-Carlo based simulations.
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