
NOLTA, IEICE

Paper

Robustness of hardware-oriented
restricted Boltzmann machines in deep
belief networks for reliable processing

Kodai Ueyoshi 1a), Takao Marukame 2, Tetsuya Asai 1 ,

Masato Motomura 1, and Alexandre Schmid 2

1 Graduate School of Information Science and Technology, Hokkaido University

Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

2 Microelectronic Systems Laboratory, École Polytechnique Fédérale de

Lausanne, CH-1015, Lausanne, Switzerland

a) ueyoshi@lalsie.ist.hokudai.ac.jp

Received February 10, 2016; Revised April 25, 2016; Published July 1, 2016

Abstract: Remarkable hardware robustness of deep learning is revealed from an error-injection
analysis performed using a custom hardware model implementing parallelized restricted Boltz-
mann machines (RBMs). RBMs used in deep belief networks (DBNs) demonstrate robustness
against memory errors during and after learning. Fine-tuning has a significant impact on the
recovery of accuracy under the presence of static errors that may modify structural data of
RBMs. The proposed hardware networks with fine-graded memory distribution are observed
to tolerate memory errors, thereby resulting in a reliable deep learning hardware platform,
potentially suitable to safety-critical embedded applications.

Key Words: deep learning, restricted Boltzmann machines (RBMs), fault tolerance

1. Introduction
Deep learning (DL) algorithms have been devoted a growing attention, owing to impressive perfor-
mances recently demonstrated in acceptedly difficult applications, e.g., classification and prediction,
exceeding the performances of conventional machine learning algorithms [1–3]. Nevertheless, DL algo-
rithms require significant computational time and dissipate large amounts of power in order to reach
a state where the data structure is optimized with a set of parameters that are suitable to obtain
intelligent operations. Consequently, the execution of learning algorithms is considered excessively
slow, specifically in the case of large-scale networks, de facto limiting the focus to small-scale models,
or to the use of training sets of small size. Iterative updates of connection weights of the network use
over the major part of the learning time. In practical cases, training of DL has been performed by
cloud servers or high-performance graphics processing units (GPUs) [4]. Hence, efficient and reliable
hardware systems are required to satisfy the growing needs of DL in big data analysis, autonomous
system control and cognitive applications. Developments of field programmable gate array (FPGA)

395

Nonlinear Theory and Its Applications, IEICE, vol. 7, no. 3, pp. 395–406 c©IEICE 2016 DOI: 10.1587/nolta.7.395

or application specific integrated circuit (ASIC) technologies tailored to support DL algorihtms are
expected to accelerate the studies and applications of DL and machine learning, in general [5–9].

Unsupervised DL algorithms aim at finding some structure in the data and clustering individual
data into groups. The restricted Boltzmann machine (RBM) model is a prominent representative of
unsupervised DL algorithms. In turn, RBMs can be used as building blocks of hybrid deep network,
such as deep belief networks (DBNs). The hardware implementation of RBMs has been the focus of
several recent studies, [4–8]. An original architecture supporting scalable and highly parallel RBM
microelectronic systems has been developed, and forms the core hardware used in this study [9].
In RBM structures that are organized layer-by-layer, the stochastic process of the iterative learning
efficiently reduces computational time, although all the learned data represented as connection weights
and node biases should be stored in a suitable memory and updated during the learning sequence.
During learning or feed-forward calculations phases, any error occurring in the memory results in
degraded performance of DBN-based applications. Consequently, robustness to memory errors is
expected in embedded and safety-critical applications which will make use future memory generations
subjected to expectedly decreasing fabrication yield. Robustness to memory errors is also a factor of
cost reduction by enabling low redundancy of memory at the integrated circuit and system levels [18,
19].

The structural construction of RBMs is expected to provide robustness against memory errors, ow-
ing to network topologies that are generally redundant. Earlier, studies have considered the potential
impact of degradation or limitations in some of the parameters used in the representation of neural
networks, e.g., reduced bit-precision in [10], noise in the input set in [11], discretization noise and
effect of event-driven simulation in [12]. However, the detailed fault-tolerance of DBNs assuming a
highly scalable hardware system where memory or memory transfers may induce errors has never
been studied. This work analyzes the dependence of accuracies to faults that are injected into a
memory block that stores structural data consisting of weights and biases. The research presented in
this paper is conducted in a general context aiming at developing reliable hardware made from unre-
liable components, specifically targeting the integration of machine learning towards its generalized
usage in cheap consumer products. Hence, the final objective consists of developing hardware and
algorithms that mutually support each other’s potential defectiveness for all blocks of an integrated
system, including the datapath and control, the memory and communication channels. In this specific
context, we consider that the learning and the fine-tuning are processed on-chip, which also supports
the assumption of future autonomous fault-tolerant machine-learning based processing.

This study focuses on the impact of structural data degradation that is stored in a faulty memory.
Results of error-injection analysis after RBM learning and fine-tuning are reported, and demonstrate
strong robustness against errors that originates from the hardware network construction. A hardware
system processing the DBN and implemented on a FPGA platform, as well as its model are used to
this purpose. Section 2 presents the developed hardware architecture supporting RBM integration.
Section 3 presents the fault models that have been considered, the fault-tolerance analysis method
that has been applied and discusses the results.

2. RBM hardware and modeling for DBNs

RBMs obey a stochastic neural network model consisting of two layers, namely a visible and a hidden
layer. The network consists of an undirected graph model in which neurons in one layer are fully
connected to neurons in the complementary layer. RBMs are tuned using three parameters, i.e., the
connection weights, visible biases, and hidden biases. The learning process is unsupervised and results
in the update of the parameters. The equations representing the update originate from contrastive
divergence (CD) learning [1, 2]. The RBM calculation flow consists of two repeating steps. In the
first step, input data is delivered to the visible layer, and the hidden layer output is calculated using
the visible layer’s values as input. At this point, all visible layer and hidden layer combinations are
calculated. In the second step, the visible layer is calculated, using sampling results from the hidden
layer as input. The update equation is approximated by consecutive repetition of these steps. The

396

Algorithm 1: RBMs training pseudo-code

input : RBM(v1,, vm, h1,, hn), Learning
rate α

output: parameters wij , bi, cj

(i = 1,,m, j = 1,, n)

1 init wij = rand(−1/m ∼ 1/m), bi = cj = 0
2 v(0) ← v
3 for t = 0 to k do
4 if t �= 0 then
5 for i = 1 to m do
6 for j = 1 to n do
7 tmp+ = hj

(t) ∗ wij

8 P (vi
(t)) = sigmoid(tmp + bi)

9 vi
(t) = P (vi

(t)) > rand(0 ∼ 1)

10 for j = 1 to n do
11 for i = 1 to m do
12 tmp+ = vi

(t) ∗ wij

13 P (hj
(t)) = sigmoid(tmp + ci)

14 hj
(t) = P (hj

(t)) > rand(0 ∼ 1)

15 for i = 0 to m, j = 0 to n do
16 wij+ = α ∗ (vi

(0) ∗ P (hj
(0))− vi

(k) ∗ P (hj
(k)))

17 for i = 0 to m do
18 bi+ = α ∗ (vi

(0) − vi
(k))

19 for j = 0 to n do
20 cj+ = α ∗ (P (hj

(0))− P (hj
(k)))

pseudo-code of the learning algorithm is presented in Algorithm 1. Lines 3 through 14 show the
repeating steps processed to obtain the sample required for the update, and lines 15 through 20 are
the update sequence.

This learning algorithm has been demonstrated in [9], and the corresponding architecture has been
implemented on FPGA. This algorithm and architecture are used in the present study to perform
the analysis of memory-error tolerance.

Deep networks are constructed by stacking RBMs in a layer-by-layer manner. A hidden layer that
has completed learning is used as a visible layer for the RBM located in the next layer. The DBN
configuration is completed by applying back-propagation to perform fine-tuning.

Fig. 1. Overall data-flow of the architecture. The memory blocks into which
errors are injected are shown as gray-shaded blocks.

Figure 1 shows the overall data-flow and the proposed architecture. Input data is delivered from
the input buffer to the RBM unit, where CD learning computation is repeatedly carried out. The
learning update equation is simultaneously processed in the update unit, and the results stored in the

397

unit’s local memory. When a learning process is completed, the learning data is moved from the local
memory of the update unit to the local memory of the RBM unit. These operations are controlled by
a common finite-state machine (FSM) controller, and a linear feedback shift register (LFSR). Input
data is assumed to consist of unsigned 8-bit fixed-point numbers represented as continuous values
ranging from 0 through 1. Connection weights are signed 16-bit fixed-point numbers, and arithmetic
unit results are rounded to signed 16-bit fixed-point numbers.

As an example, RBMs are constructed from blocks consisting of four hidden and four visible neurons,
and their interconnections. Figure 2(a) shows a conceptual diagram of a RBM of size n neurons in both

Fig. 2. RBM hardware algorithm and corresponding implementation archi-
tecture. (a) Fine-graded RBM blocks (0 to n) defined from an original network
with hidden and visible nodes. The example of unit network size of 4×4 (con-
nections) is shown. (b) Block-diagram of the proposed architecture. RBM
blocks consist of sum-of-product, activation, and update calculations, which
are connected with shift registers. The parameter memories and update mem-
ories are modeled as a target of error injections, and are depicted as gray-shaded
blocks.

398

the visible and hidden layers, which is partitioned into blocks of 4 neurons to reduce circuit resources
allocated to connections between the two layers. Hence, the resulting number of connections in an
RBM block is equal to 4×4. This block-partitioned architecture calculates all connections, thereby
supporting full connectivity between the visible and hidden layers, by the means of a time-division
processing that makes use of shift registers for its physical implementation, as well as additional
control logic. The circuit details are reported in [9]. As a benefit of this approach, the number of
connections to process, and thus the time and arithmetic complexity are linear with respect to the
number of neurons.

Figure 2(b) presents the detail block-diagram of the partitioned and parallel implementation of the
algorithm, focused on the first two blocks. The block size, i.e., the number of neurons in the layers
that are processed by the block can be reconfigured to larger sizes such as 8, 16, and 32. The process
is divided into three phases, and the hardware serving each phase is separated from the others by a
shift register. These registers store and propagate data from or into each block, and also take the
role of data storage in a pipelined realization. In the first sum-of-products phase, each RBM block
multiplies all the inputs and connection weights in parallel, and calculates the respective outputs
using an adder tree. This approach is possible because each RBM block is configured on a small
scale. In each RBM block, a local memory saves parameters which are only used inside the specific
block. The sigmoid calculation and binomial distribution calculation are performed in the next phase
of activation. The approximate sigmoid calculation is obtained using a piecewise linear function. A
binomial distribution calculation is also obtained from a dedicated circuit that determines the output
as a binary value, logic 0 or 1, by comparing and thresholding the input with respect to random
numbers delivered by the LFSR. In the last phase of update, the parameter update calculation is
performed. The update unit has a completely parallel architecture to receive and process data that
accommodates the parallel processing of RBM blocks. In addition, the architecture of the update
unit is similar to the architecture of the sum-of-products unit, since both carry out processing over
the entire set of parameters. The update unit contains a local memory that stores the update data
for the RBM unit; these values are constantly updated during the learning process.

The structure of a DBN consists of multiple layers of artificial neural networks. Typically, a
DBN consisting of three stages of RBMs represents an accepted configuration in character recognition
applications, [1, 2]. DBNs exploit the probability values of RBMs in order to propagate extracted
features from the 1st (256 nodes) / 2nd (256) / 3rd (256) layers to the final classifier consisting of
10 nodes supporting the selected ten-digit character recognition application. The proposed hardware
architecture is used in an iterative way in order to emulate DBNs. As a first step, initial parameters
are processed which pertain to RBMs in the 1st layer. Subsequently, a 2nd layer of RBMs is processed,
using the outputs of the 1st layer as inputs. Layers are created on the top of another following this
iterative procedure. Each RBM is trained over 20 epochs, in this study. After all layers are created,
supervised learning is performed in the final classifier. In this process, external memory storage is
required, which also is the key enabler to the emulation of DBN of arbitrary sizes.

3. Fault tolerance analysis

Defects are expected to occur in many components of processor systems, such as memory, control,
datapath and communication channels. Many types of faults may occur, each causing a specific
incorrect electrical behavior at the affected node, which may propagate to the output node as an
observed error. Complementary metal oxide semiconductor (CMOS)-based integrated systems have
experienced a golden age of high reliability until the advent of deep-submicron fabrication technologies.
In these technologies, yield has decreased, and the necessity to find economically tractable solutions
has fostered a revival of fault-tolerant circuits and yield enhancement techniques, as well as reliability
studies. Exact numerical values of yield, reliability, error rates are classified data; nevertheless the
relevance of the issue is clearly manifested by an abundant amount of scientific literature, e.g., [13–
17].

Fault models are defined from the way in which they modify the parameters of a network, e.g.,

399

Fig. 3. DBN classification accuracy as functions of (a) epochs and (b) error
rate; faults are injected into the weights and biases that are stored in a memory
after three sequences of RBM learning.

stuck-at logic-zero or stuck-at logic-one which modifies the weights and biases. Random noise sources
in transistors are a critical factor affecting the reliability of a wide range of CMOS and memory tech-
nologies, causing bit-flippings that also depend on the device size, [18]. Soft errors are one of the major
concerns in the reliability of large-scale integrations. Understanding the failure modes and quantify-
ing the error rate under natural radiation are primarily crucial for the development of high-density
static random access memories (SRAMs), [19]. As a main memory of large-scale computing systems,
dynamic random access memories (DRAMs) have been widely used, and have shown a remarkable
reliability from the appllication point of view, though mostly owing to the implementation of redun-
dancy and error correction coding (ECC). In modern systems employing DRAMs, however, a growing
memory error rate is observed, which depends on the device count; in addition, a significant amount
of faults is observed in the memory controllers and transmission channels, [20]. The aforementioned
types of faults may affect the neural network itself or the memory in which parameters are temporarily
stored. Considering a digital processor that is used to compute the network emulation, faults affecting
the parameters modify the calculation results and are static. A network should be trained to sustain
faults occurring at any location of the data path. Studies must be carried out in order to identify how
the parameters of a network should be modified such that the network may be capable of sustaining
a certain amount of faults, e.g., bit-precision, network connectivity and topology, number of neurons
and layers. This paper focuses on the impact of faults altering structural data of RBMs which are
stored in a memory, namely the weights and biases values. Potential memory defects are modeled
into faults, which adverse effect over the learning process is studied.

3.1 Analysis using discontinuous faults
RBMs learn a set of parameters that are stored in a local memory during a pretraining phase. This
structural data can be affected by memory errors that may occur at different timings, as shown
earlier [21]. In this Section, the robustness of the hardware DBN model is analyzed by applying random
fault injection into the weights and biases. Injected faults obey memory faults models that reflect
the presence of realistic memory defects. The mixed national institute of standards and technology

400

Fig. 4. Flow of hardware bit-flipping analysis, showing the time and sequence
models of fault injection.

(MNIST) handwritten dataset is used to analyze classification accuracy [1]. As the parameters learned
by the DBN are in the form of a matrix that is attached to each RBM, the fault-injection operation
replaces a number of elements of the matrix with a substitute value that obeys the selected fault model.
The replaced elements are randomly chosen, and multiple executions enable obtaining statistically
relevant results, following the Monte Carlo methodology.

First, faults are injected after the pretraining procedure is completed. The analyzed classification
accuracies of the DBN are presented as a function of the learning epochs (Fig. 3(a)) and considering
various fault types and rates (Fig. 3(b)). The error rate is defined as the ratio of the number of
parameters into which error is injected to the total number of parameters. A C-language model of
the RBMs that accurately emulates the hardware that is also implemented on an FPGA is used. A
Matlab model is used in the fine-tuning procedure, only. An improvement of the accuracy is observed
when fine-tuning is applied after the 6th epoch. In our model, for each memory cell, a datum changes
from some value (= x) into a wrong value (= x’), where the assumed error is caused from a mixture
of possible memory fault models such as bit-vanishing (stuck-at-zero) and bit-flipping considered at
cell and circuit levels. Bit-vanishing can be observed as the burst error in the memory controller
or data transfer channels. Bit-flipping may occur when x-rays strike memory cells or when voltage
noise is inherently generated by random telegraph noise. Bit-vanishing and bit-flipping of the sign
bit cause a change of the sign of the affected value. In our analyses, bit-vanishing is modeled as a
severe deletion of all bits storing a value at once, resulting in an incorrect stored value equal to ‘0’.
Bit-flipping of the integer or precision bits creates incorrect random values, e.g., 0.5. Finally, sign-bit
errors are modeled by value changes to +1/-1. The Error value which parameterizes the results in
Fig. 3 and Fig. 5 expresses the incorrect value x’. These fault models modify the electrical operation
of the cell in an analog manner, for instance, considering tiny current leakage effects potentially due
to the presence of unwanted metal extensions creating a high-impedance short circuit. The DBN
maintains a good accuracy of 97% after 15 epochs, even when considering initial faults present in the
memory, and in spite of the fact that the accuracy depends on the initial errors before the fine-tuning.
From this analysis, memory-fault tolerance is observed with respect to faults caused by (1) vanishing
nodes, modeled by a value equal to 0, e.g., x=1 into x’=0, (2) reduction of the stored value, modeled
by lowering the absolute value, e.g., x=1 into x’=0.5, and (3) most significant bit (MSB) bit-flipping,
modeled by a sign inversion (a positive sign is replaced by a negative sign, and vice-versa), e.g., x=1
into x’=-1. This result suggests that a distributed cache memory that is affected by errors can still
be used without any error correction, which is a result with fundamental practical impact.

Figure 4 presents the flow of the further analysis and specifies the time and sequence models of
fault injection. In a next experimental phase, faults are injected into all the structural data of the
DBN after the learning process, which includes fine-tuning. The accuracy is uniform under error

401

Fig. 5. DBN classification accuracy vs. error rate considering various error
values. (a) Faults are injected into all the structural data after fine-tuning. (b)
Accuracy after relearning with 10 epochs of fine-tuning.

rates up to 10% when the error model consists of x’ set to 0, whereas the accuracy significantly
reduces when x’ is not at 0 (Fig. 5(a)). Figure 5(b) shows recovered accuracies that are obtained by
applying a relearning computation sequence from the results shown in Fig. 5(a), specifically applying
ten additional epochs of fine-tuning. Consequently, any value of memory faults up to the rate of 20%
can be fixed by fine-tuning.

3.2 Hardware bit-flipping analysis
A bit-flipping model is considered for the RBM learning and the classification performance evaluation
of the DBN in order to realistically emulate digital hardware faults. Taking the results of the previous
analysis into account, a stochastic bit error is specifically considered. With increasing epochs in the
normal RBM sequences, the sum-of-errors tends to decrease and be in a low saturated state, toward
20 epochs.

Figure 6 shows the analyzed performance applying various kinds of fault models, namely

(a) initial hard faults (injecting random bits) that are kept in learning as well as subsequently, and
which supports the model of process errors that affect all types of memory, as well as design
errors that may specifically be encountered in FPGA development; this model is applied in
Fig. 6(a);

(b) temporal bit-flipping faults during learning of RBMs and which supports the model of soft errors
occurring in the memory or communication channel, and that may be encountered due to radi-
ation (SRAM), noise in transistors (SRAM, NOR-Flash), noise in the signal channel (all mem-
ories), data retention (NAND-Flash, resistive random access memory (ReRAM)), Read/Write
error (magnetoresistive random access memory (MRAM)); this model is applied in Fig. 6(b);

(c) bit-flipping after learning of RBMs, i.e., before supervised learning; this model is applied in
Fig. 6(c).

402

Fig. 6. Fault injection analysis based on a bit-flipping model for (a) initial
hard faults, (b) random bit-flipping during learning, and (c) bit-flipping after
learning.

These results show that the tolerance to static faults (Fig. 6(a) and 6(c)) is higher than the tolerance
to dynamic faults (Fig. 6(b)). When faults are injected during the RBM learning sequences, different
tendencies can be observed especially for higher error rates, resulting in much higher sum-of-error
values than their initial values. Before starting fine-tuning at the 6th epoch, reasonably high accuracies
with low error rates are obtained. An error rate of 0.0005% yields much reduced accuracy, while an
error rate of 0.001% does not enable reaching a 90% accuracy, even while using fine-tuning (Fig. 6(b)).

The dependence of the accuracy with respect to the size of RBM blocks (4×4, 8×8, 16×16, 32×32
connections) is further investigated, considering that all parameters of one of the blocks are altered by
bit-vanishing. These block errors may be encountered in the memory controller (DRAM, embedded
Flash (eFlash)), or due to endurance issues (emerging non-volatile memories, embedded ReRAM
(eReRAM) etc.). As presented in Fig. 7, a small network unit exhibits better performance before
fine-tuning, whereas a larger-size block shows degradation. However, the accuracy of all network sizes
consistently increase when fine-tuning is applied.

Table I summarizes the resource utilisation of the proposed architecture implemented on a com-
mercial FPGA board (DE3 with an Altera Stratix III FPGA). The performance of the proposed

403

Fig. 7. Fault tolerance analysis dependence on the unit network size (4 × 4,
8 × 8, 16 × 16, 32 × 32) of RBM blocks. All parameters of one of the blocks
are altered by bit-vanishing.

Table I. Resource utilization of binary RBMs on FPGA(Stratix III).

Resource ALUT Registers Block memory 18x18 DSP
Combinational Memory

RBM 189579(70.111%) 1024(0.757%) 26880(9.941%) 2490368(14.946%) 0(0.000%)
Controllers 236(0.087%) 7(0.005%) 97(0.036%) 0(0.000%) 0(0.000%)

Total 189815(70.198%) 1031(0.763%) 26977(9.977%) 2490368(14.946%) 0(0.000%)

Table II. Performance summary of RBM on FPGA.

This work (2016) Kim et al. (2009) Ly & Chow (2010) Kim et al. (2014)
Platform EP3SL340 EP3SL340 XC2VP70 XC6VSX760
of chips 1 1 1 4 1
Network 256 × 256 256 × 256 128 × 128 256 × 256 256 × 256
Clock [MHz] 50 200 100 80

16.6(4 × 4)b

GCUPSa 66.4(16 × 16)b N/A 1.6 3.1 59.6
Benchmark MNIST handwritten N/A MNIST handwritten N/A

digit digit
Accuracy 97% N/A N/A N/A
Errortolerance Evaluated N/A N/A N/A
a CUPS = number of weight / time updates in one learning step.
b Size of one RBM block network (16 × 16 is assumed, for estimations).

architecture is compared with other FPGA implementations (Table II). Our hardware shows fast
speed in terms of CUPS (connection updates per seconds), even though using a slower FPGA clock
rate than other developments. Moreover, the speed can be adapted to unit RBM configurations, as a
benefit of the linear scalability of the proposed architecture. The soft error analysis in Fig. 6(b) con-
siders a bit error rate smaller than 10−3%, whereas a typical value of soft error rate of SRAMs equals
103 FIT (Failure-In-Time, corresponding to an error rate equal to 10−6%) for all process nodes, [22].
Only this work demonstrates memory-fault tolerance on the implemented hardware, indicating 97%
classification accuracy even if the memory suffers from notable errors, larger than 0.1%, Figs. 6(a)
and (c).

4. Conclusion
This study first quantifies the robustness of a DBN consisting of custom RBM hardware. in order to
study the behavior of the network, errors are randomly injected into the connection weights prior to
supervised DBN fine-tuning. The classification accuracy shows remarkable recovery under practical
error rates affecting the memory, owing to the fine-tuning sequence. The achieved results confirm
a strong robustness against memory errors. Hence, RBM-based DL systems can be implemented in

404

hardware forming an architecture that is expected to be reliable by construction.

Acknowledgments

The authors thank Drs. Y. Higashi, Y. Nishi, Y. Mitani, and K. Muraoka of Toshiba Corporation for
their invaluable support and suggestions.

References
[1] G. Hinton and R.R. Salakhutdinov, “Reducing the dimensionality of data with neural networks,”

Science, vol. 313, no. 5786, pp. 504–507, 2006.
[2] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets,” Neural

Computation, vol. 18, no. 7, pp. 1527–1554, 2006.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
[4] R. Raina, A. Madhavan, and A.Y. Ng, “Large-scale deep unsupervised learning using graphics

processors,” Proc. 26th Annual International Conference on Machine Learning, pp. 873–880,
2009.

[5] S.K. Kim, L.C. MacAfee, P.L. McMahon, and K. Olukotun, “A highly scalable restricted
Boltzmann machine FPGA implementation,” Proc. International Conference on Field Pro-
grammable Logic and Applications, pp. 367–372, 2009.

[6] S.K. Kim, L.C. MacAfee, P.L. McMahon, and K. Olukotun, “A large-scale architecture for
restricted Boltzmann machines,” Proc. 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, pp. 201–208, 2010.

[7] D. Ly and P. Chow, “High-performance reconfigurable hardware architecture for Restricted
Boltzmann machines,” IEEE Transactions on Neural Networks, vol. 21, no. 11, pp. 1780–1792,
November 2010.

[8] L.W. Kim, S. Asaad, and R. Linsker, “A fully pipelined FPGA architecture of a factored
restricted Boltzmann machine artificial neural network,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 7, no. 5, pp. 1–23, 2014.

[9] K. Ueyoshi, T. Asai, and M. Motomura, “Scalable and highly parallel architecture for restricted
boltzmann machines,” Proc. RISP International Workshop on Nonlinear Circuits, Communi-
cations and Signal Processing, pp. 369–372, 2015.

[10] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S.B. Furber, and S.-C. Liu, “Robustness of
spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware
platforms,” Frontiers in Neuroscience, vol. 9, article. 222, pp. 1–14, 2015.

[11] Y. Tang and C. Eliasmith, “Deep networks for robust visual recognition,” Proc. 27th Interna-
tional Conference on Machine Learning, 2010.

[12] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs, “Event-driven con-
trastive divergence for spiking neuromorphic systems,” Frontiers in Neuroscience, vol. 7, arti-
cle. 272, pp. 1–14, 2014.

[13] R. Baumann, “The impact of technology scaling on soft error rate performance and limits to
the efficacy of error correction,” IEDM Tech. Digest, pp. 329–332, 2002.

[14] S. Borkar, “Designing reliable systems from unreliable components: The challenge of transistor
variability and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[15] M.A. Alam, K. Roy, and C. Augustine, “Reliability- and Process-variation aware design of
integrated circuits — A broader perspective,” Proc. 2011 IEEE International Reliability Physics
Symposium (IRPS), pp. 4A.1.1–4A.1.11, 2011.

[16] The International Technology Roadmap for Semiconductors, Edition 2013.
[17] R. Aitken, E.H. Cannon, M. Pant, and M.B. Tahoori, “Resiliency challenges in sub-10nm tech-

nologies,” Proc. 2015 IEEE 33rd VLSI Test Symposium (VTS), pp. 1–4, 2015.
[18] Y. Higashi, N. Momo, H. Momose, T. Ohguro, and K. Matsuzawa, “Comprehensive under-

standing of random telegraph noise with physics based simulation,” Proc. Symposium on VLSI
Technology (VLSIT), pp. 200–201, 2011.

405

[19] J.L. Autran, S. Serre, D. Munteanu, S. Martinie, S. Semikh, S. Sauze, S. Uznanski, G. Gasiot,
and P. Roche, “Real-time soft-error testing of 40nm SRAMs,” Proc. 2012 IEEE International
Reliability Physics Symposium (IRPS), pp. 3C.5.1–3C.5.9, 2012.

[20] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “Revisiting memory errors in large-scale production
data centers: Analysis and modeling of new trends from the field,” Proc. 2015 45th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 415–
426, 2015.

[21] T. Marukame, E. Calabrese, and A. Schmid, “Fault tolerance analysis of Restricted Boltzmann
Machines in deep learning for embedded biosignal processing,” Proc. International Conference
of the IEEE Engineering in Medicine and Biology Society, August 2015.

[22] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi, “Modeling the effect of
technology trends of the soft error rate of combinational logic,” Proc. International Conference
on Dependable Systems and Networks, pp. 389–398, 2002.

406

