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Abstract: In this paper, we propose a Bayesian branch-prediction circuit, consisting of an
instruction-feature extractor and a naive Bayes classifier (NBC), as a machine learning ap-
proach for branch prediction. A branch predictor predicts the outcome of a branch instruction
by analyzing the pattern of the previous branch outcome. In other words, branch prediction
can be viewed as a type of pattern recognition problem, and such problems are often solved us-
ing neural networks. A perceptron branch predictor has already been proposed as one example
of a neural branch prediction architecture, which predicts the next branch outcome by using
past branch history to form feature vectors. The proposed circuit is constructed by replacing
the arithmetic unit (neurons) in conventional neural branch predictors with an NBC. By intro-
ducing an approximate Bayesian computation and its parallel architectures, the NBC circuit
completes branch prediction within two clock cycles per instruction. This constitutes a suit-
able replacement for conventional branch predictors in modern pipelined reduced instruction
set computing microprocessors.

Key Words: dynamic branch prediction, supervised machine learning, naive Bayes classifier,
energy-efficient microprocessor, low-power architecture, CMOS digital circuit

1. Introduction

The artificial neuron was first proposed around half a century ago in [1-3]. Today, neural networks
continue to result in significant improvements in the field of pattern recognition. Pattern recognition
is used to identify the category of some given data that is useful for humans, such as images, sounds,
texts, and statistical data, by extracting and learning its features [4—6]. However, useful information
for computers could also become a target for pattern recognition. Indeed, general microprocessors
are equipped with dynamic branch predictors that predict the outcome of a branch instruction by
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Fig. 1. Perceptron branch predictor [7].

analyzing the outcome pattern of a previous branch. Recent studies have proposed the adoption of
a neural network approach to predict branches, and have proved that a neural branch predictor can
achieve a significantly lower misprediction rate than conventional branch predictors [7].

Branch prediction represents one of the most important technologies required to achieve a highly
effective performance in modern pipelined microprocessors. Its precision directly affects both instruc-
tion throughput and power consumption, because incorrect predictions can result in a pipeline stall
(flush) and energy-inefficient instruction refetching from the (cache) memory. Many advanced predic-
tion methods have been proposed and implemented with the aim of achieving high-precision branch
prediction [9-11]. Among these, neural branch prediction, which is based on a machine learning
approach, demonstrates a high prediction accuracy [8].

The original neural branch predictor consists of a linear classifier, a first-in first-out (FIFO) global
branch history (GBH) of length [, and a weight table, as shown in Fig. 1, where the variable m repre-
sents the number of bits of the weight counter, x represents past branch outcomes, and y represents
the predicted next branch outcome. The FIFO GBH acts as an instruction-feature extractor. In
addition, the linear classifier is trained on the basis of a simple perceptron rule, with [ different weight
sets targeted by the addresses of the branch instruction. Because learning is always performed, weight
divergence or learning may be observed during online learning. This significantly degrades the preci-
sion of the branch prediction. To solve this problem, we focus on the use of a naive Bayes classifier
(NBC) [12], and replace the linear classifier in Fig. 1 with NBC units.

NBCs have been applied as mathematical formalisms within the field of machine learning in var-
ious domains, ranging from medical informatics to e-mail filtering. Several NBC circuits have been
proposed, such as in [13,14]). In general, the computational cost of an NBC is considerably high,
on account of the additive and multiplicative arithmetical operations involved. Indeed, in [13], a
minimum of five clock cycles were required for NBC computation, whereas in [14] 10 clock cycles were
required. In standard pipelined microprocessors, for example those consisting of five stages indexed
by instruction fetch (IF), instruction decode (ID), execution (EX), memory access (MA), and write
back (WB), branch prediction following TF must be completed before the conclusion of the EX stage.
Hence, when employing NBC the computation for branch prediction must be finished within two
clock cycles. Therefore, in this paper we propose a short-latency naive Bayes classifier. By integrat-
ing NBC circuits in an open-source 32-bit microprocessor (LatticeMico32 [15]), we demonstrate the
performance in terms of both precision and energy efficiency for the static, perceptron, and proposed
NBC branch predictors.

2. Architecture

2.1 Naive Bayes classifier
Naive Bayes is the simplest type of Bayesian network. It is a probabilistic graphical model, represent-

ing conditional dependencies of random variables through a directed acyclic graph. A naive Bayes
network consists of multiple child nodes and a single parent node. Each child represents an evidence
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Fig. 2. NBC for branch prediction: feature variables x; represent previous
branch outcomes, and the class variable y represents the predicted next branch
outcome.

variable x;, for which the parent is the class value. A child and its parent are attached through a con-
ditional probability table (CPT). We can predict a class value by calculating the posterior probability
P(y=c|z1,x2,...,2,), using CPTs and the prior probability P(y), as follows:

Play |y=c)P(z2|y=¢c)...P(zn |y =c)P(y =)
Ply=c|X)= 1
(y C| ) P(xlax%"'?xn) ( )
In terms of branch prediction, the evidence variables X = {x1,xo, ..., z,} represent previous branch

outcomes, and the class value y represents the predicted next branch outcome (see Fig. 2). Each z;
and y take a value of 0 (not taken) or 1 (taken). Thus, all variables in the network are Boolean. Using
these variables, we calculate the posterior probabilities P(y = 0 | X) and P(y = 1 | X), and predict
the next branch outcome by comparing these probabilities.

2.2 Hardware architecture of NBC

Figure 3 illustrates the hardware architecture of an NBC. We implement each likelihood P(z; | y) in
the CPT and prior probability P(y) by using up/down saturating bimodal counters, given that each
x; is Boolean and the following relationship holds:

{P(y—O)—l—P(y—l) @)
Plz;=0|ly=c¢c)=1—P(z;=1|y=c¢c)

As shown in Fig. 3, there are two counters p(y = 0) and p(y = 1) in the P(y) table. These counters
are updated when a branch instruction is executed, as follows:
if t =0 then
p(y=0)—ply=0)+1
ply=1) <ply=1)-1
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Fig. 3. Hardware architecture for calculating the posterior probabilities by
using a CPT. Probability estimates are simplified for hardware implementa-
tion.
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end if

where ¢ is the branch outcome. The same rule applies when ¢t = 1.

The GBH registers and the function are implemented as shift registers and an instruction-feature
extractor, respectively. For each historical outcome z;, there are four counters p(z;,y), where z;
and y are either 0 or 1. These counters are updated in a similar manner to the P(y) table, as
follows:

if £ =0 then

if z; =0 then
p(r; =0,y =0) —p(z; =0,y =0)+ 1
plri=1y=0)—plz;=1,y=0)—1
end if
end if

Using these counters, we calculate P(y = 0 | X) and P(y = 1 | X). By substituting these
probabilities into Eq. (1), the fractions in the formulae can be eliminated, because we only need to
compare them to predict the next branch outcome. Therefore, we obtain

Py | X) < P(y)P(z1 | y)P(z2 | y) ... P(zn | y) (3)

Furthermore, to replace multipliers with adders, we compute the logarithm of both sides of Eq. (3),
as follows:

log P(y | X) o< log P(y) +log P(z1 | y)... +log P(xn | y) (4)

Figure 3 shows the prediction of the next branch outcome. Appropriate counters are selected
between x; = 0 and x; = 1 from the y = 0 and y = 1 rows for each i, based on the values in the GBH.

As shown in Fig. 4, the most significant bits (MSBs) in the selected counters are added, because
it is possible to replace the additions of the logarithms in Eq. (4) with summations of the MSBs in
the selected counters [16]. We implemented this addition function by using lookup tables (LUTSs)
and several small adders to reduce the latency and circuit area. Because each MSB loaded from the
CPT or P(y) table represents a single bit, the addition of these bits can be replaced by counting the
number of “1” bits. Hence, the loaded MSBs are first segmented into small groups, and the number of
bits that are set to 1 in each group are counted using the LUTs. Next, the outputs from the LUTSs are
added using some small adders. Moreover, pipeline registers are inserted between the adders, because
the path through these chained adders can be critical.
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Fig. 4. Computation of posterior probability P(y = ¢ | x1,x2,...,2,) using
LUTs and adders.
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2.3 Implementation of naive Bayes branch predictor in a microprocessor

To determine the pipeline depth of the proposed naive Bayes branch predictor (NBBP), we examined
the pipeline stages of LatticeMico32 [15], which is the base processor used to implement the NBBP.
LatticeMico32 has six pipeline stages, as shown in Fig. 5, and branches are predicted in Stage D. This
indicates that only one clock cycle elapses between a prediction in Stage D and the execution in Stage
X. Considering the latency of the NBC architecture, it is impractical for the NBBP to predict the
next branch outcome in one clock cycle. Accordingly, we applied the branch decoder and predictor to
Stage F instead of Stage D. Thus, we have two clock cycles between the prediction and execution, as
illustrated in Fig. 6. We inserted pipeline registers into the adders, and divided the adders into two
stages, as shown in Fig. 4.

Figure 7 presents the schematic of the proposed NBBP. The branch instruction address is hashed
to select a CPT and a P(y) table, and the GBH functions as an instruction-feature extractor. The
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Fig. 5. Pipeline stages of LatticeMico32 [15].
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Fig. 6. Relocation of the branch predictor from Stage D to F in Lattice-
Mico32. (a) Branch prediction is operated in Stage D and executed in Stage
X. (b) We relocated the prediction to Stage F to achieve execution within two
clock cycles.
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Fig. 7. NBBP Architecture.

posterior probabilities P(y = 0 | X) and P(y = 1 | X) are computed using the selected P(y) and
CPT, and the next branch outcome is predicted by comparing them. When the branch instruction is
executed, the GBH, P(y), and the CPT are updated according to the branch outcome. The prediction
accuracy and hardware cost are mainly dependent on the sizes of the CPTs, for example the length
of the GBH (I bits), range of the branch addresses used for hashing, and sizes of the bimodal counters

in the CPTs. Next, we investigated the dependencies among these parameters and the prediction
accuracy through simulations.

3. Simulation results

3.1 Misprediction rate

We used the MiBench benchmarks [17] to assess the accuracy of the proposed NBBP method im-
plemented in LatticeMico32. First, we investigated the effects of the history length, address range,
and counter size on the accuracy. It is clear from previous experiments that a greater history length
and address range imply a higher accuracy, as shown in Fig. 8. In contrast, the accuracy decreases
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Fig. 8. Simulation results for the misprediction rate. (a) History length
vs. misprediction. (b) Address range vs. misprediction. (¢) Counter size vs.
misprediction.
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Fig. 10. Improvement in execution time of each benchmark.

as counter size increases, because a large counter requires a long time to converge. Based on these
results, we set the history length to 30 bits, address range to eight bits, and size of each bimodal
counter to four bits.

Then, we compared the accuracy of our proposed NBBP method with the static and perceptron
branch predictors, by using seven benchmarks available in MiBench. The static branch predictor is the
standard branch predictor implemented in LattieMico32. It always predicted that forward-pointing
conditional branches would not be taken, and that instead backward-pointing conditional branches
and unconditional branches would be taken.

The results of the simulation showed that NBBP is the most accurate method for five of the
applications, as shown in Fig. 9. Naive Bayes was able to learn linearly inseparable functions, unlike
simple perceptrons. Thus, NBBP outperformed the perceptron branch predictor. For the other two
applications, the static branch predictor yielded the highest accuracy. We assume that these two
applications have a very simple structure or include few iterations.

Figure 10 shows the improvement in the execution time. The execution time was only slightly
reduced, even with the proposed high accuracy NBBP method. The degree of the speed-up effect
depends on the scale of the program and the number of stages of the processor’s pipeline. Hence,
using larger benchmark programs or a more complex microprocessor would have a significant effect
on both the execution speed and the prediction accuracy.

3.2 Power consumption

We estimated the power consumption of LatticeMico32 equipped with the static branch predictor or
NBBP by using its toggle rate and MA frequency, obtained through simulations. For the estimation
conditions, we set the design technology to 0.18 um, the core voltage to 1.8 V, and the clock frequency
to 100 MHz, as shown in Table I, and employed the basicmath_small benchmark for the estimation.
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Table I. Synthesis conditions for power estimation.

Specification
Technology UMC 0.18 pgm CMOS
Core area 3.0mm x 3.0mm (CPT accounts for 70 %)
Supply voltage 1.8V
Clock frequency 100 MHz
Size of CPT 122 kbits
Size of P(y) table 2 kbits
Size of instruction memory | 800 kByte
Size of data memory 800 kByte

To prepare for the simulation, we first synthesized the verilog source files of LatticeMico32 using a
Synopsys design compiler. The results of the synthesis showed that registers of the CPT and the P(y)
table accounted for a large portion of the core area. We considered that these registers would lower
the energy efficiency, and hence assumed that the CPT and the P(y) table should not be implemented
as registers, but rather as embedded SRAM. We then estimated their power consumption by using
the given data from [18].

As previously mentioned, the NBBP method is more accurate than the static branch predictor.
A high prediction accuracy reduces the frequency of communication operations, such as IF, between
the microprocessor and memory, thus enhancing the energy efficiency. To consider this advantage of
NBBP, we estimated the power consumed by accessing memory based on the prepared data [18].

Figure 11 illustrates the simulation model, and Table II presents the estimation results for one
iteration of the benchmark. Py, and Py represent the power consumed during the execution and
the average power consumption, respectively.

“Logic” represents the power consumption of the LatticeMico32 circuit. When NBBP was imple-
mented, more power was consumed than for the static branch predictor. As shown in Table III, the
number of gates of the processor in which each branch predictor was implemented was 30.6 K for the
static branch predictor, 44.8 K for the perceptron branch predictor, and 51.4 K for NBBP. This gate
increase led to a decrease in the logic power efficiency. However, because LatticeMico32 only loses

Psum of “Memory” [W]

= Pave. of “Memory” [W/time] x access frequency [time]
"“~_.,y ----------------- :
Peum of “Logic” [W] E on-chip SRAM E
= Pae. Of “Logic” [W/s] x execution time [s] E data E
_\ _______________ . ; memory :
! | LatticeMico32 | ! g !
h ] i instruction ]
' | processor core | | |
' i i memory !
] — |
WISHBONE
» 32-bit timer
SRAM flash memory
UART GPIO
controller controller

-+ ¢

Fig. 11. Block diagram of the LatticeMico32 embedded system. We esti-
mated the power consumption of the processor core as well as the data and
instruction memories.
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Table II. Simulation and estimation results when running basicmath_small
benchmark in one iteration (n = 1).

Logic Memory

Total power
B ave. Exe. time B sum Py ave. | Access freq. | Puysum | consumption

Static
branch
predictor | 12.7 mW 3.03 ms | 0.039 mW | 70 nW 295 ktimes | 20.7 mW 20.73 mW

NBBP 41.9 mW 297 ms | 0.124 mW | 70 nW 289 ktimes | 20.3 mW 20.42 mW

Table III. Gate count and circuit area of LatticeMico32.

Gate count [K] | Circuit area [ mm?]
w/ static branch predictor 30.6 0.287
w/ perceptron branch predictor 44.8 0.382
w/ NBBP 51.4 0.482

three clock cycles when failing to predict a branch, the difference in the execution time between the
static branch prediction and NBBP was 0.06 ms. Therefore, although the number of gates increased,
the overhead of the logic power was only 0.09 mW.

On the other hand, the high accuracy of the branch prediction using NBBP led to a reduction in
the memory access frequency, thus reducing the power consumption for memory access. In Table II,
“Memory” represents the estimated power consumption resulting from memory access. The processor
accessed the memory approximately 300,000 times during execution of 3 ms. The difference in the
number of times memory was accessed between the static branch prediction and NBBP was 6000,
and the power of the memory access was reduced by 0.4 mW.

As a result, the reduction of the “Memory” power exceeded the increase in the “logic” power
consumption. Hence, the power efficiency of the overall system was improved.

Because this power reduction effect becomes more significant as the program becomes larger, we
determined that the processor using NBBP is more efficient than the other in terms of the total power
consumption.

Using the simulation and estimation results, we calculated the logic power consumption when
iterating the benchmark as follows:

P sum [W] = Plave. [W/s] x execution time [s] x n
where n is the number of iterations. Similarly, the memory power consumption is estimated by
P sum [W] = Pu_ave. [W/time] X access freq. [time] x n

The results we obtained for these calculations are shown in Fig. 12. We determined that the difference
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Fig. 12. Dependence of the difference in power consumption on the number
of benchmark iterations.
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between the power consumptions of the processors using NBBP and the static branch predictor
satisfies the relation

difference of power consumption [mW] = 0.32n

, and the processor using NBBP consumed 320mW less power than the processor using the static
branch predictor.

4. Conclusion
In this paper, we have proposed a highly accurate dynamic branch predictor that employs an NBC.

The proposed NBBP method predicts the next branch outcome within two clock cycles, by simpli-
fying probability calculations using Bayes’ theorem. In our simulation, an RISC processor equipped
with NBBP yields a higher accuracy than conventional branch predictors. The estimation results
demonstrated that the proposed architecture is more energy efficient than static branch prediction.
The high prediction accuracy of this architecture reduces pipeline stalling and instruction refetching.
Thus, NBBP is a valid method for improving the energy efficiency of modern pipelined processors.
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