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Abstract

Analog computation is a processing method that solves a given problem by utilizing an analogy of a physical system
to the problem. An idea is presented here for relating the behavior of quantum-flux parametron circuits to analog
computation. As an example, a method is proposed for solving a combinatorial optimization problem, the max-cut
problem, by utilizing the properties of quantum-flux parametron circuits. In problem solving, a parametron circuit is
constructed whose free energy is related to the objective function of a given problem and then is made to settle down to
its minimum energy state. The solution to the problem can be obtained by checking the final state that the circuit
reaches. The effectiveness of this method was confirmed by computer simulation for sample problem instances. © 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

One promising research area in single-flux-
quantum electronics is the development of novel
computation devices based on non-Boolean logic
architectures. We here propose one such device, an
analog computation device using single-flux para-
metron circuits.

Analog computation [1,2] is a processing
method that solves a mathematical problem by
applying an analogy of a physical system to the
problem. To solve the problem with this method,
one prepares an appropriate physical system and
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represents each problem variable by a physical
quantity in the system. If the mathematical rela-
tions between the physical quantities are analo-
gous to those of the problem, then one can find the
solution to the problem by observing the behavior
of the system and measuring the corresponding
physical quantities. In this computation, a given
problem is mapped onto the physical system and is
solved through concurrent or parallel operation of
all the elements in the system. Through this par-
allelism, analog computation can provide the
possibility of solving complex problems in a short
time regardless of the size of the problem.
Proposed here is an analog computation device
that solves combinatorial-optimization problems
by utilizing the energy-minimizing property of
quantum-flux parametron circuits. By constructing
a parametron circuit whose free energy is related
to the objective function of a given combinatorial
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problem, we can solve the problem simply by ob-
serving to what state the circuit will settle down.
The concept of this device is explained in the fol-
lowing sections with an example of a typical
combinatorial-optimization problem, the max-cut
problem.

2. Max-cut problem

The max-cut problem is stated as follows: Given
a graph G = (V,E) with positive weights on the
edges, find a partition of the vertices V = {1,
2,...,n} into disjoint sets ¥, and 7] such that the
sum of the weights of the edges that have one
endpoint in }; and one endpoint in ¥; is maximal.
As an instance, a weighted graph and its maximal
cut are shown in Fig. 1.

To formulate the objective function for the
max-cut problem, we here define a number of
variables. Let d;; be the weight associated with the
edge {i,} (by definition, d;; = d;;) and let x; be a
1/—1 variable defined as

then the max-cut problem can be formulated as

maximize ZZ% (x — x;)°, (2)
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which can be rewritten as
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Fig. 1. An instance of a weighted graph. The maximal cut is
given by two vertex sets {1, 4} and {2, 3, 5}.

3. Quantum-flux parametron

The quantum-flux parametron [3] is a switching
device (Fig. 2) consisting of two Josephson junc-
tions J; and J,, load inductor Ly, and two excita-
tion transformers consisting of primary inductors
L, and secondary inductors L. It has two super-
conducting loops, i.e., left loop J,—L—L4—J; and
right loop J,—Ls—L4—J>. To operate the parame-
tron, we send the excitation current /., into the
primary inductors, thereby applying magnetic flux
to each loop. For small values of this excitation
flux, the parametron is in a monostable state and
almost no flux threads the loops. If the excitation
flux increases to exceed a critical value (about a
quarter of the fluxoid quantum @, the parametron
turns into a bistable state and a net flux begins to
thread either loop. The threading net flux increases
with increase in the excitation flux and reaches
nearly @, when the excitation flux increases to
®y/2. We here define the parametron is in state
“1” if the net flux is threading the left loop and is
in state ““—1” if the net flux is threading the right
loop. The state can be identified by observing the
direction of the current flowing in the load in-
ductor Ly, the current flows downward to GND in
state “1” and upward from GND in state “—1".
Which of the states the parametron takes depends
on the polarity of a seed flux applied to the load
inductor from the outside of the parametron.

4. Analogous circuit for the max-cut problem
Using quantum-flux parametrons, we can con-

struct an analogous circuit whose free energy is
related to the objective function of the max-cut

lex Lp Lp

Josephson junction

Fig. 2. Quantum-flux parametron.
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Fig. 3. Quantum-flux parametron circuit for solving the max-
cut problem. The circuit for a five-vertex graph is shown.

problem. Taking a problem graph having five
vertices as an example, the configuration of the
analogous circuit is shown in Fig. 3. We prepare
five parametrons (QFP-1 through QFP-5) and
represent vertex i of the problem graph by ith
parametron. To represent edge {7,j} with weight
d;;, we magnetically couple ith parametron with jth
parametron (i,j = 1,2,3,4,5); i.e., we divide the
load inductor of each parametron into four iden-
tical inductors as shown in Fig. 3 and couple
magnetically a divided load inductor of ith para-
metron with that of jth parametron by mutual
induction coefficient k;;. The value of k; (|k;| < 1)
is set at a negative value proportional to —dj;. In
this way, we can construct the analogous circuit
for any problem graph given.

To solve the problem, we turn on excitation
current /. for the parametrons and increase it
continuously. When the excitation current, there-
fore the excitation flux, exceeds a critical value, the
state of all the parametrons becomes bistable;
consequently, some parametrons settle down in
state ““1”” and the others settle down in state “—1".
According to their 1/—1 states, we partition the
vertices of the problem graph into two sets, i.e., the
vertices corresponding to “1”’-state parametrons

and the vertices corresponding to “—17-state para-
metrons. The maximal cut for the problem graph
is given by these two sets of vertices.

This solution is based on the energy-minimizing
behavior of the parametron circuit. The free en-
ergy of the circuit is given as follows. We here
consider a circuit consisting of n parametrons and
define variables x; (i =1,2,...,n) by

X = 2(431 - ¢ex)/¢07 (4)

where @, is the excitation flux induced by the
excitation current, and @; is the net flux threading
the left loop of ith parametron. Variable x; repre-
sents the state of ith parametron; it is 1 or —1 for
®x = Py/2 because, as mentioned in the previous
section, the net flux in the loop is nearly @, or zero
for @ = ®,/2. Using variables x;, the free energy
F of the circuit is given by
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where L4 is the total load inductance of each para-
metron, I, is the maximum supercurrent of the
Josephson junctions, and k;; is the mutual induc-
tion coefficient between the sub-inductors of ith
and jth parametrons. It was assumed here that
@ > 2nLd, and |k;| < n. Note that the second
term in Eq. (5) is identical to the objective function
(Eq. (3)) of the max-cut problem.

To operate the circuit successfully, Lq and I
have to be set at values such that 4nlyly > @,.
Under this condition, we turn the excitation cur-
rent on and increase it, thereby increasing excita-
tion flux @, from 0 to ®y/2. In zero excitation
(P =0), the free energy is minimum at x; =0
(i=1,2,...,n) because the third term is domi-
nant; consequently, the circuit takes this zero state.
If the excitation current is started and @, is
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thereby increased to @/2, the third term is domi-
nant again and therefore the free energy becomes
minimum atx; = lor —1 (i = 1,2,...,n); there are
2" possible minimum states (2" combinations of x;)
and the circuit changes from the initial zero state
to one of these 2" states. To which of the states the
circuit changes is determined during the increase in
®... When @, increases to a critical value (about
@, /4), the first and the third terms in Eq. (5) offset
each other at around x; = 0. In this condition, the
second term becomes dominant and, consequently,
the circuit begins to change its state so that the
second term, identical to the objective function of
the problem, will become minimum.

5. Problem-solving operation and discussion

For various instances of the max-cut problem,
we confirmed the problem-solving operation of the
analogous circuit by computer simulation. Illus-
trated here is a result for the problem instance
given in Fig. 1. The analogous circuit used has the
same configuration as shown in Fig. 3. The circuit
parameters were: n =5, Ly =24 pH, Ly =2 pH,
and Iy = 0.05 mA. The mutual inductance be-
tween the primary inductor and the secondary
inductor in the excitation tansformer was assumed
to be 1.6 pH. For every Josephson junction, par-
allel resistance of 5 Q and parallel capacitance of
0.1 pF were assumed. The mutual induction coef-
ficient k;; between each two divided load inductors
was set at —0.1 x d;;, where dj; is the weight of the
edge given in Fig. 1.

The result is shown in Fig. 4. We retrieved the
state of parametrons by observing the direction of
the current (/; through I5) in the load inductors. In
this example, the excitation current was gradually
increased from 0 to 0.45 mA with a time constant
of 20 ns. When the excitation current increased to
exceed the critical value, all the parametrons
turned into a bistable state as shown in the figure.
Their final states represent the solution to the
problem; i.e., the maximal cut for the problem
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Fig. 4. Problem-solving operation of the quantum-flux para-
metron circuit (simulation). /.,: excitation current, /; through /s:
load current of each perametron.

graph is given by two vertex sets {1, 4} and {2, 3,
5}. We repeated this solving procedure many times
and confirmed that every trial resulted in the cor-
rect solution. Thus we can find the solution to the
max-cut problem by using the quantum-flux para-
metron circuit. This solving method can be used
for solving other combinatorial problems because
many combinatorial problems can be reduced to
the max-cut problem.
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