
Superlattices and Microstructures 34 (2003) 253–258

www.elsevier.com/locate/superlattices

A single-electron circuitas a discrete dynamical
system

Takahide Oya, Yoshiyuki Takahashi, Masayuki Ikebe,
Tetsuya Asai∗, Yoshihito Amemiya

Department of Electrical Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 060-8628, Japan

Available online 6 May 2004

Abstract

A single-electron circuit can be operated as a discrete dynamical system because it changes its
internal state discontinuously because of electron tunneling. To confirm this idea, we designed a
sample circuit for discrete dynamical operation and confirmed by computer simulation that the circuit
successfully generated a sequence of discrete-time outputs by following a return map. The concept
of discrete dynamical systems will be useful in developing new functional systems that consist of
quantum devices and nanostructures.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The single-electron circuit isan electronic circuit designed to manipulate electronic
functions by controlling the transport of individual electrons, making use of the Coulomb
blockade phenomenon [1]. A distinctive characteristic of the single-electron circuit is that
the circuit changes its state discontinuously because of electron tunneling. This enables
single-electron circuits to be operated as discrete dynamical systems. We propose an
example of such a discrete dynamical system and illustrate its operation using results
obtained by computer simulation. Our goal is to create new information-processing devices
that can make use of the discrete dynamical behavior of single-electron circuits.
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Fig. 1. The discrete logistic system expressed byXn+1 = aXn(1− Xn): (a) return map, (b) two-cycle oscillation,
(c) eight-cycle oscillation, and (d) chaotic behavior.

2. Discrete dynamical system

A discrete dynamical system is a system in which the evolution of the variables is
measured in discrete time steps. The behavior of the system is governed by a difference
equation, or a return map, that gives the(n + 1)th value of variables as a function of the
precedingnth value of the variables.

A discrete dynamical system shows complex behavior even in simple systems with few
variables [2]. An example is thediscrete logistic system, a single-variable system whose
behavior is expressed by the return map,

Xn+1 = a Xn(1 − Xn),

shown in Fig. 1(a), where Xn and Xn+1 are the nth and (n + 1)th values of the
variable. In this system, a series of bifurcations occurs as the positive parametera
increases. Consequently, the system exhibits dynamical behavior from a variety of periodic
oscillations to chaos. Some examples are shown inFig. 1(b)–(d).

3. Single-electron circuits for producing discrete dynamical behavior

Because of electron tunneling,the single-electron circuit produces discontinuous
change of its internal state, allowing it to be operated as a discrete dynamical system.
As an example, we propose a single-electron circuit consisting of two coupled single-
electron oscillators.Fig. 2shows the configuration. In this circuit, one oscillator consists of
a resistor R1 and aleft tunneling junctionC j , connected in series at node 1 and biased with
a positivevoltageVdd. Theother oscillator consists of a resistorR2 and aright tunneling
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Fig. 2. A single-electron circuit consisting of two coupled oscillators.

junctionC j at node 2 and biased with a negative voltage−Vdd. The oscillators are coupled
by a capacitorC. The variables of the circuit are node voltagesV1 andV2.

Without the coupling capacitor, each oscillator would produce a self-induced simple
SET oscillation independent of the other. Coupled by capacitorC, the two oscillators
interact with each other to produce the phenomenon of entrainment. For example, suppose
electron tunneling occurs in the left oscillator through junctionC j from the ground to
node 1. Then node 1 carries a negative charge to decrease its voltage to a negative value,
and this may induce tunneling in the right oscillator from node 2 to the ground. Similarly,
tunneling in the right oscillator may induce tunneling in the left oscillator. In this way, the
two oscillators influence each other and cause a mutual relationship between node voltages
V1 andV2.

4. Simulating discrete-time behavior of the coupled oscillators

By computer simulation, we studied the dynamics of this circuit. In the simulation, we
assumed the tunneling waiting time to be zero. In other words, tunneling was assumed
to occur as soon as the voltage condition for the Coulomb blockade was broken in the
circuit.

Fig. 3shows an example of the operation with the waveform of node voltageV2 (node
voltageV1 shows a similar waveform but is not illustrated). In this operation, we define
the variable of the circuit as the value ofV2 measured just before electron tunneling occurs
(or just before a waveform jump occurs); thenth value of the variable is denoted byXn in
the figure. The circuit can therefore be considered as a dynamical system that produces a
sequence of discrete-time variablesXn (n = 0, 1, 2, . . .). By plotting Xn+1 as a function
of Xn, we can obtain a return map that governs the dynamics of the system. To draw
an exact return map, we studied the phase portrait of the system operation, as described
next.

5. The phase portrait and return map for system operation

The system operation is governed by the equations in (a) and (b) below:
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Fig. 3. The waveform of node voltageV2 in the coupled oscillators, simulated with parametersC j = 10 aF,
C = 5 aF,R1 = 0.4 G�, R2 = 1.2 G�, andVdd = 12 mV. The discrete-time variable is denoted byXn .

(a) node voltagesV1 andV2 change continuously in the following way:

dV1/dt = {R2(1 + C/C j )(Vdd − V1) − R1

× (C/C j)(Vdd + V2)}/{C R1R2(1 + 2C/C j )}
and

dV2/dt = {R2(C/C j )(Vdd − V1) − R1

× (1 + C/C j )(Vdd + V2)}/{C R1R2(1 + 2C/C j )}
if the node voltagesV1 and V2 are in a range of−Vth ≤ V1, V2 ≤ Vth, where
Vth = e(1 + C/C j )/{2C(1 + 2C/C j )};

(b) whenV1 or V2 exceeds this range, electron tunneling occurs in the circuit and this
changes the values ofV1 andV2 discontinuously in increments�V1 and�V2 given
by

(b-1) �V1 = −V0 and�V2 = −(C/C j )V0/(1+C/C j ) whenV1 exceeds the upper
threshold Vth, whereV0 = e(1 + C/C j )/{C(1 + 2C/C j )},

(b-2) �V1 = V0 and�V2 = (C/C j )V0/(1+ C/C j ) whenV1 decreases beyond the
lower threshold−Vth,

(b-3) �V1 = −(C/C j )V0/(1+C/C j ) and�V2 = −V0 whenV2 exceeds the upper
threshold Vth, and

(b-4) �V1 = (C/C j )V0/(1+ C/C j ) and�V2 = V0 whenV2 decreases beyond the
lower threshold−Vth.

The resulting dynamics of the system depends on the circuit parameters (C j , C, R1, R2,
andVdd). We have not yet succeeded in giving a general, analytical expression for the return
map. Instead we show an example of the return map obtained by computer simulation with
a sample set of circuit parameters.
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Fig. 4. The attractor of the operation plotted on aV1–V2 phase plane, simulated with different values for the
coupling capacitanceC . Theother parameters are the same as inFig. 2. The coupling capacitanceC is (a) 2 aF
(3-cycle oscillation), (b) 5 aF (8-cycle oscillation), and (c) 20 aF (36-cycle oscillation).

To obtain the return map, we simulated the system operation and plotted the trajectory
of the oscillation on aV1–V2 phase plane. The trajectory depends on initial values ofV1
and V2, but was attracted, as time passed, to a set ofcurves (an attractor) independent
of the initial conditions.Fig. 4(a)–(c) show the attractor for three values of coupling
capacitanceC. The system exhibited periodic oscillation and, roughly speaking, the
number of cycles increased with the coupling strength.

Fig. 4(b) explains the operation in detail. The system produces an eight-cycle
oscillation. The attractor for the oscillation starts at point 1, proceeds rightward to 2, jumps
discontinuously to 3 because of tunneling in theright junction, proceeds rightward to 4,
jumps discontinuously to 5 because of tunneling in both junctions, and finally returns to
1. The resulting flow on the attractor is 1→ 2 → 3 → · · · → 16 → 1. We simulated
the system operation using different initial conditions to examine the transient trajectories
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Fig. 5. The return map for the system with the parameter set shown inFigs. 3and4(b).

that lead to the attractor. From this phase portrait, we obtained a return map that gives the
sequence of discrete-time variablesXn (the values ofV2 just before electron tunneling).
This map is shown inFig. 5(the shape is similar to that in the Nagumo–Sato mathematical
neuron model). We are now studying the general expressions for the return map to grasp
the entire dynamics of the system.
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