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A Subthreshold MOS Neuron Circuit
Based on the Volterra System

Tetsuya Asai, Yusuke Kanazawa, and Yoshihito Amemiya

Abstract—We present an analog neuron circuit consisting of a
small number of metal-oxide semiconductor (MOS) devices oper-
ating in their subthreshold region. The dynamics of the circuit were
designed to be equivalent to the well-known Volterra system to fa-
cilitate developing the circuit for a particular application. We show
that a simple nonlinear transformation of system variables in the
Volterra system enables designing a neuron-like oscillator, which
can produce sequences in time of identically shaped pulses (spikes)
by using current-mode subthreshold MOS circuits. We present ex-
perimental results of the fabricated neuron circuits as well as an
application in an inhibitory neural network, where the neurons
compete with each other in the frequency and time domains.

Index Terms—CMOS analog integrated circuits, integrate-
and-fire neurons, neural competition, Volterra equation.

I. INTRODUCTION

STIFF responses of spiking neurons prevent us from simu-
lating large-scale spiking neural networks on conventional

digital systems (computers) because the time-step values in the
simulation have to be chosen to be much smaller than the spike
widths. Analog very large-scale integration (VLSI) implemen-
tations of the networks enable studying the dynamic properties
in real time, independent of system size, which implies that the
neural VLSI is a possible tool for developing an artificial neural
system that is superior to our central nervous system.

A number of spiking neurons on VLSIs have already been
developed including silicon neurons that emulate cortical
pyramidal neurons [1], FitzHugh-Nagumo neurons with
negative resistive circuits [2], and artificial neuron circuits
based on byproducts of conventional digital circuits [3]–[5].
Since recent functional models of spiking neural networks
tend to use integrated-and-fire neurons (IFNs) rather than
Hodgkin-Huxley-type neurons [6], neuromorphic engineers
have developed hardware neural systems with several types
of IFN circuits to investigate the effect of spike timing and
synchrony on the network’s computational properties. They
include competitive neural circuits with IFNs for processing
sensory signals [7], hardware depressing synapses [8], and
learning circuits with spike-driven synaptic plasticity [9], [10].

The IFN models are useful for both simulating spiking neural
networks on digital computers and designing them on VLSIs;
however, their theoretical analyses, e.g., the stability analysis of
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the neuron’s dynamics, are not easy due to the IFNs reset (dis-
continuous) operations in time after the firing. In this paper, we
propose an IFN circuit based on the Volterra system [11] whose
dynamics are continuous in time. Using the Volterra system in
the neuron circuit has two merits: 1) the underlying mechanism
for the Volterra system is both qualitatively and quantitatively
known [12], which facilitates designing a neural circuit suitable
for a particular application and 2) by introducing a simple non-
linear transformation of system variables, the Volterra system
can be represented by the linear combination of exponential
functions, which is very useful for designing the dynamics in
current-mode subthreshold MOS circuits [13].

This paper is organized as follows. In Section II, we first in-
troduce a traditional IFN model and then propose a MOS IFN
circuit whose dynamics are designed to be equivalent to that
of the Volterra system. In Section III, we show experimental re-
sults of the fabricated IFN circuits. Section IV shows an applica-
tion of the IFNs in an inhibitory neural network whose neurons
compete with each other in the frequency and time domains.
Section V is the summary.

II. IFN CIRCUIT BASED ON THEVOLTERRA SYSTEM

The IFN is defined as follows: 1) the neuron produces a pul-
sive output, which is called aspike, when the membrane poten-
tial exceeds a certain threshold value and 2) after the spike is
produced, the membrane potential is reset to its resting poten-
tial [14]. Typical dynamics of the two-step IFN model are given
by

(1)

(2)

(3)

where , and represent the membrane potential, the
excitatory postsynaptic potential (EPSP), the inhibitory postsy-
naptic potential (IPSP), and the resting potential, respectively,
and stands for the time constants. The neuron accepts ex-
citatory and inhibitory input currents through the ex-
citatory and inhibitory synapses. An excitatory input increases
the membrane potential, whereas an inhibitory input decreases
it. When membrane potentialexceeds a given threshold value,
a spike is produced. Then, the membrane potential is reset to the
resting potential. Note that this reset operation is not included
in (1) to (3).

We propose using the Volterra system to mimic the inte-
grate-and-reset operations in the IFN model. The Volterra
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Fig. 1. IFN circuit composed of a soma inhibitory-, and excitatory-synapse
circuits.

system was originally introduced to explain the oscillatory
levels of certain fish catches in the Adriatic, and is given by

(4)

(5)

where represents the prey population, the predator pop-
ulation, and the positive constant [12]. The system exhibits
initial-value-dependent oscillatory behaviors, and its trajectory
can analytically be obtained as

(6)

where represents a positive constant. We assume that prey pop-
ulation represents the membrane potential of an IFN, and that
the predator population is used to reset the membrane poten-
tial.

By introducing a new variable , we obtain

(7)

(8)

from (4) and (5), respectively. We show that this system can
easily be implemented on analog VLSIs by using current-mode
subthreshold MOS circuits [13]. Fig. 1 shows our IFN circuit
constructed of analog CMOS circuits. The circuit implements a
soma circuit based on the Volterra system as well as the excita-
tory and inhibitory synapses of the neuron model. For the time
being, we consider the operation of the soma circuit.

The EPSC increases the membrane potential, while the
IPSC decreases it. An increase in the membrane potential in
the soma circuit induces an increase in potential. Thus, when
the membrane potential exceeds a certain threshold voltage, the
input node P of the membrane is suddenly shunted by tran-
sistor . The shunted current increases exponentially with in-
creasing membrane potential. The sudden current increase rep-
resents spike generation. The output current is obtained
by transistor .

In the subthreshold region of operation without body effect,
the drain-source current of the saturated MOS transistor is given
by

(9)

where represents the drain-source current, the
gate-source voltage ( for saturation), the MOS fabri-
cation parameter, the effectiveness of the gate potential, and

mV at room temperature (is Boltzmann’s
constant, the temperature, and the electron charge) [15].
Typical parameters for minimum-size devices fabricated in a
standard analog 1.5-m n-well process are A
and . The dynamics of the membrane potential in terms
of the EPSC and IPSC are, thus, given by

(10)

where represents the membrane capacitance of the soma and
the leak conductance between the membrane and the ground.

Equation (10) is equivalent to (3) when and the last
term at the right of (10) is zero. This term represents the current
of transistor , and this transistor acts as the shunting inhibitor.
The degree of inhibition is determined by the value of. The
dynamics of are

(11)

where represents the capacitance. Whenincreases,
increases as well. The increase generates pulsive output
currents (spikes) in transistors and . The increase in the
drain-source currents of transistor induces a subsequent
shunting inhibition, which means that membrane potential
is reset to zero after the spike is produced. Notice that (10)
and (11) are equivalent to (7) and (8), respectively, when the
leak conductance is zero. The soma circuit is thus an electronic
analog of the Volterra system.

The EPSC and IPSC in the neuron circuit, which correspond
to the current of transistors and , respectively, are repre-
sented by

(12)

(13)

from (9). Then, the dynamics of the excitatory and inhibitory
synapse circuit obey

(14)

(15)

where (or ) represents the excitatory (or inhibitory)
input current and (or ) the capacitance between the
excitatory (or inhibitory) synapse and the soma. Equations (14)
and (15) are qualitatively equivalent to (1) and (2), respectively,
since the exponential functions in the former two are monoton-
ically increasing functions.

III. EXPERIMENTAL RESULTS

We fabricated a prototype IFN chip using a 1.5-m CMOS
process (MOSIS, vendor: AMIS). Fig. 2 shows a micrograph
of the IFN circuit. The capacitors , and were de-
signed with a large capacitance due to the limited time resolu-
tion of our measuring systems. The capacitors took up a total
area of 120 m 200 m.
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Fig. 2. Chip micrograph of fabricated IFN circuit.

Fig. 3. Experimental results of IFN circuit for stationary inputs.

First, we confirmed the oscillatory behavior of the IFN circuit
to stationary inputs. The input current (EPSC-IPSC) and the bias
current were set at 1 nA. The supply voltage was set at 5 V.
Fig. 3 shows the experimental results. When the value of
exceeded the threshold voltage (0.5 V), suddenly increased.
Consequently, was reset to zero when V. Fig. 4
shows closed phase plane trajectories. The solid and
dashed curves represent nullclines of the circuit. A fixed point,
which is given by a cross point of the nullclines, was obtained
as .

Fig. 5 shows the results of the IFN circuit for spike inputs. The
supply voltage was set at 5 V, and the bias currentwas set at
100 nA. In the experiment, periodic current pulses were applied
to the excitatory and inhibitory synapse circuits. When an input
pulse was applied to the inhibitory synapse circuit, the mem-
brane potential decreased due to the increase in the IPSP.
Similarly, the membrane potential increased due to the input
pulse applied to the excitatory synapse circuit. When the IPSP
fell below a certain threshold voltage, a spike was generated due
to the reduced shunting inhibition by the IPSC. The spike cur-
rent ( nA) was five orders of magnitude larger than
the resting current ( pA), and these two could, thus, be very
easily distinguished from each other.

Fig. 4. Closed(U ; V ) phase plane trajectories of the IFN circuit.

Fig. 5. Experimental results of IFN circuit for spike inputs.

Fig. 6. Inhibitory neural circuits using IFNs.

IV. A PPLICATIONS: FREQUENCY- AND TEMPORAL-DOMAIN

NEURAL COMPETITION

We constructed an inhibitory neural network in which the IFN
circuits are coupled to each other through all-to-all inhibitory
connections of equal strength [16]. This coupling reduces the
complexity of the connection of neurons to . Fig. 6
shows the reduced network consisting ofIFN circuits and a
global inhibitor, which is constructed of pMOS transis-
tors. Each IFN circuit accepts an intrinsic external input. The
nMOS transistors connected to the IFN circuits produce an ex-
citatory input current . The global inhibitor receives the sum
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Fig. 7. Chip micrograph of fabricated four-IFN network.

Fig. 8. Experimental results for four-IFN network. (Firing-rate encoding).

of the IFN outputs . This total current is copied in
each IFN circuit to produce the inhibitory input current .

Fig. 7 is a photograph of the chip that contains four IFN cir-
cuits and one global inhibitor circuit. The results for a four-
neuron network are shown in Figs. 8 and 9. In these experiments,
external input values were encoded as either a firing rate or spike
timing. Encoding the external input as a firing rate means that
the strength of the external input is equivalent to the frequency
of the train of identically shaped voltage pulses. Encoding
the external input as spike-timing code means that the strength
is equivalent to the timing of spike generation relative to the
timing of its external periodic input.

The results for the firing-rate encoded input are shown
in Fig. 8. The amplitudes of the input current pulses
were fixed at 100 nA. The frequencies of four periodic pulses

; and were set at 200 kHz, 150 kHz,
100 kHz, and 50 kHz, respectively. Because IFN circuits
inhibit each other through the global inhibitor, IFNs receiving
high-frequency input remained active, while those receiving
low-frequency inputs became inactive.

Fig. 9. Experimental results for four-IFN network. (Spike-timing encoding).

When inputs encoded as spike timings were applied to the
same network, it showed quite a different qualitative behavior,
as shown in Fig. 9. Here, the external input values are trans-
formed into the initial delay times of the periodic input pulses.
In Fig. 9, the arrows show the timing at which each IFN re-
ceived the input pulse. This demonstrates that competition oc-
curred in terms of the times at which the input pulse reached
the individual IFNs. This phenomena (“first come, first served”
or “early arrival matters”) simply originates from the refractory
period of the IFN circuits and the lateral inhibition. It should be
noted that frequency-domain competition was achieved by in-
troducing analog inputs that carried encoding in the form of the
firing-rate frequency, while competition in the time domain was
achieved by having inputs that carried encoding in the form of
the spike timing.

V. SUMMARY

We proposed and fabricated a simple IFN circuit based on the
Volterra system and an inhibitory neural network consisting of
a few of these circuits. The IFN circuit was designed to produce
sequences of spikes in time according to the strengths of the
signals on its inhibitory and excitatory inputs. Experimental re-
sults showed that the IFN circuit was equivalent to the Volterra
system and that it had the same qualitative properties as the
two-step IFN model. As an example, a inhibitory neural net-
work was fabricated to demonstrate the network’s competitive
behavior in the frequency and time domains.
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