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We investigated the implications of static noises in a pulse-density modu-
lator based on the Vestibulo-ocular Reflex model. Based on this model, we
constructed a simple neuromorphic circuit consisting of an ensemble of
single-electron devices and confirmed that static noises (heterogeneity in
circuit parameters) and dynamic noises (random noises as a result of spon-
tancous tunneling events) introduced into the network indeed played an
important role in improving the fidelity with which neurons could encode
signals whose input frequencies are higher than the intrinsic response
frequencies of single neurons. Through Monte-Carlo based computer sim-
ulations, we demonstrated that the heterogeneous network could correctly
encode signals with input frequencies as high as | GHz, twice the range
for single (or a network of homogeneous) neurons.
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1 INTRODUCTION

Nano-electronic devices are viewed as promising building blocks for the
next generation of so-called Beyond CMOS LSIs. The Beyond CMOS devices
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include single-electron devices [1], which operate by regulating the flow of
single or a few electrons. Single-electron circuits are thus viewed as poten-
tial information processing devices for ultra-low power electronic systems.
In addition, because of the high device integration as a result of the minute
physical sizes of individual devices, single-electron devices have the poten-
tial for applications in parallel-signal processing systems that would require a
high density of arrayed devices. In spite of these advantages, single-electron
devices suffer from high fabrication mismatches (i.e. variance in individ-
ual device parameters), and also have low tolerance to internal and external
noises. Therefore to effectively utilize the merits of single-electron devices
in creating reliable and efficient electronic systems, there is need to come
up with a method to either (i) eradicate these set backs through improved
fabrication techniques or compensate for the drawbacks through additional
circuitry incorporated into the systems or (ii) effectively utilize these setbacks
to create new circuit architectures.

If we look at how neuronal systems function, we find that they have high
heterogeneity in intrinsic response properties of individual neurons; they have
diverse variances in firing rates, and some of the neurons are even defective.
However, in spite of these set backs neurons, as systems, accurately encode
signals as they are relayed from sensory organs to the central nervous system,
or to other organs. A number of reports suggest that neurons in fact employ
heterogeneity to effectively encode signals. Hospedales et al. ([3]) demon-
strated that neurons in the VOR can encode high frequency signals with a
high temporal precision as a result of their heterogeneity.

In this study, toward establishing new circuit architectures for single-
electron devices, we investigate the implications of parameter heterogeneity
and dynamic noises in reliable transmission of signals in an ensemble
of single-electron integrate-and-fire neurons (IFNs). Through Monte-Carlo
based computer simulations, we show that heterogeneity in device param-
eters indeed reduces synchrony among individual neurons, consequently
increasing the temporal fidelity with which neurons can encode input signals
with frequencies higher than the intrinsic response frequencies of individual
neurons.

2 PULSE-DENSITY MODULATION IN INTEGRATE-AND-FIRE
NEURONS

An integrate-and-fire neuron (IFN) aggregates inputs from other neurons
connected through synapses. The aggregated charge raises the membrane
potentia] until it reaches a threshold, where the neuron fires generating a
spike. This spike corresponds to a binary output 1. After the firing event,
the membrane potential is reset to a low value, and it increases again as the
neuron accepts inputs from neighboring neurons (or input signals) to repeat



NEURO-MORPHIC CIRCUIT ARCHITECTURES 55

I ,,‘,,,,,,MCLJ _/ _/_

S L

I Imm
time

(a) ®

FIGURE 1

A:(a) Pulse density modulation in integrate-and-fire neurons: analog input is converted into a
pulse train (b) Fundamental structure and operation of integrate-and-fire neurons (IFNs). The
IFN receives input voltages through excitatory and inhibitory synapses, and produces a pulse
train whose pulse density (firing rate) is proportional to the net input voltage. B: Single-electron
wnneling (SET) oscillator: (a) circuit structure and (b) waveform showing oscillation.

the same cycle; producing a stream of one and zero pulse trains. The spike
interval (density of spikes per unit time) is proportional to the analog input
voltage i.e. the level of analog input is coded into pulse density. Thus a neuron
can be considered as a I-bit A-D converter operating in the temporal domain.
Fig. 1A:(a) shows a schematic representation of analog-to-digital conversion
in IFNs. The output pulse density is proportional to the amplitude of the input
signal. Fig. 1A:(b) shows the fundamental operation of an IFN. The open cir-
cles (o) and shaded circles () represent excitatory and inhibitory synapses,
respectively. The IFN receives input signals (voltages) through the excitatory
synapses (to raise its membrane potential) and inhibitory synapses (which
decrease the membrane potential) from adjacent neurons, to produce a spike
if the postsynaptic potential (3" Vi* — Y V}") exceeds the threshold voltage.
After the IFN fires, its membrane voltage is reset to a low value, and the
integration action resumes.

3 SINGLE-ELECTRON OSCILLATOR AS AN
INTEGRATE-AND-FIRE NEURON

The operation of an integrate-and-fire neuron (IFN) is modelled with a single-
electron oscillator [1] - [2]. A single-electron oscitlator (Fig. 1B:(a)) consists
of a tunneling junction (capacitance = C;) and a high resistance R connected
in series at the nanodot (e) and biased with a positive or a negative voltage
Va. It produces self-induced relaxation oscillations if the input voltage is
higher than the tunneling threshold (Vy > e/(2C;)) where e is the elementary
charge and kg is the Boltzmann constant. The naodot voltage V, increases
as the capacitance C; is charged through the series resistance (curve AB),
until it reaches the tunneling threshold e/(2C;), at which an electron tunnels
from the ground to the nanodot across the tunneling junction, resetting the
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nanodot voltage to —e/(2C;). This abrupt change in nanodot potential (from
B to C) can be referred to as a firing event. The nanodot is recharged to repeat
the same cycles. Therefore, a single-electron oscillator could be viewed as
an integrate and fire neuron, which aggregates inputs (or inputs from from
neighboring neurons) producing a pulse when its nanodot voltage reaches the
threshold voltage (Fig. 1B:(b)). By feeding a sinusoidal input to a single-
electron oscillator, one can adjust the probability of electron tunneling in
the circuit: the tunneling rate increases as the input voltage rises above the
threshold and gradually decreases to zero as the input approaches and falls
below the threshold value. In other words, a single-electron oscillator converts
an analog input into digital pulses. A single-electron oscillator can thus be
viewed as a pulse-density modulator (PDM), that produces a spike train (or
produces zero) if the input signal exceeds (or falls below) the threshold value.

4 MODEL AND CIRCUIT STRUCTURE

The single-electron integrate-and-fire neuron explained in the preceding sec-
tion is used to study the implications of noises enhancing fidelity of signal
transmission in a neuronal single-electron circuit. The circuit is based on
a model of the vestibulo-ocular reflex (VOR) proposed by Hospedales et
al. ([3]). In their work, they reported that noises and heterogeneity in the
intrinsic response properties of neurons account for the high-fidelity in VOR
functionality.

Fig. 2(a) shows the part of the model, which converts head movements into
neural spikes in the VOR, consisting of n neurons, The structural heterogeneity
in the synaptic couplings (membrane time constants) of individual neurons is
represented by &;. We refer to this heterogeneity as static noises. The neurons
receive a common analog input and produce spikes whose temporal density

LACR L (]

FIGURE 2
(a) Nevral network model of signal encoding in the VOR consisting of n neurons, (b)
Implementation with single-clectron oscillators.
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corresponds to the amplitude of the input signal. The output terminal receives
pulses from all the neurons in the network to produce a spike train. The
noises introduced into the network lead to random and independent firing
events in the neurons, reducing the probability of synchrony in the network.
In addition, the variations in parameters increases the randomness with which
the network neurons fire, increasing the probability of a ready-to-fire neuron
at any given time, which consequently enhances the precision with which the
neurons in the network can encode signals with input frequencies higher those
of individual neurons.

The network is implemented with single-electron IFNs (oscillators) as
shown in Fig. 2(b). The heterogeneity in the model was introduced in the
circuit as variations in the series resistance R. Note that R is a critical parameter
in setting the intrinsic response frequency of each neuron. Therefore, by
tuning the values of R, we could simulate the heterogeneity of membrane
time constants of actual neurons.

S SIMULATION RESULTS

In the simulations, all the neurons were connected to a input voltage Vi, =
Vaa + V(t), where Vyy (bias voltage) was set to 7.8 mV to achieve a monostable
operation in the absence of input signals, V(t) is a pulsed input signal with an
amplitude of 0.8 mV. The capacitance of the tunneling junctions C; was set to
10 aF. The simulation time was set to 800 ns, while the operation temperature
T was set to 0.5 K.

Fig. 3 shows the transient response of a single neuron. Fig. 3(a) and (c)
show the respective input signals with a frequency of 600 MHz and 250 MHz,
respectively. Fig. 3(b) shows the neuron response to input “(a)", while "(d)"
shows the neuron response to input "(c)". The series resistance was set to
100MSQ. Fig.3(d) shows successful encoding of the input signal (the neuron
fires once for each pulse in the input signal ') whose frequency is within the
intrinsic firing rate of a single neuron. In Fig. 3(b), the neuron could only
encode some of the input pulses, leading to a lower firing rate as compared
to the input rate. In other words, the neuron in (b) could only transmit some
of the input pulses toward the output. This degrades the fidelity of signal
transmission along the neural network.

Fig. 4 shows the response of a single neuron over a wide range of input
frequencies. The horizontal axis shows the input frequency, while the ver-
tical axis shows the average firing rate of the neuron. The neuron response

! Tunneling (firing) in single-electron devices involves a probabilistic time lag or waiting time
between when the node voltage exceeds the threshold voltage and when an electron can actually
tunnel from the ground to the node, releasing a spike toward the output terminal. Due to the effect
of the time Iag, a neuron might fail to fire even afier achieving the tunneling conditions as seen
in Fig. 3(d). As a result, the average firing rate would be somewhat lower than the input pulse
rate
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FIGURE 3

Transient response of a single neuron. (a) and (c) show input signals with input frequencics of
600 MHz and 250 MHz, respectively. (b) and (d) show the output characteristics of neurons fed
with input signals of 600 MHz and 250 MHz, respectively.
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FIGURE 4

Output firing rate of a single neuron plotted against the input pulse frequency. Firing rate saturates
for input frequencies beyond 600 MHz.

was linear for input signals with a frequency of upto 500 MHz. Beyond this
range, the output was highly distorted. This shows that a single neuron can
successfully encode (respond to) signals with 3 maximum input frequency of
500 MHz,

The response of a population of neurons to various input frequencies was
investigated with two sets of neuron ensembles: homogeneous and heteroge-
neous networks. In the homogeneous ensembile, the series resistances Ry, Rz,
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and R; were set to the same value, whereas in the second set, heterogeneity
(static noises) was introduced by varying the values of series resistances in
the three neurons. The results are shown in Figs. 5 and Fig. 6.

Fig. 5(a) shows the input signal with a frequency of 600 MHz. Figs. 5(b-1)
and (c-1) show the response of the homogeneous network, where the series
resistances Ry, R, and Ry were set to 100 MQ. Fig. (b-1) shows the firing
events of individual neurons in the network. Fig. (c-1) shows the summed
spike output (spike train) at the output terminal. We could confirm that the
neurons in the homogeneous network tend to synchronize, emitting pulses at
almost the same timing.

Figs. 5 (b-2) and (c-2) show the response of neurons in the heterogeneous
network, where the series resistances were set to 110 MS2 for neuron I, 100
MQ for neuron 2 and 90 M for neuron 3. The firing events in the het-
erogeneous network are more or less random as shown in Fig. 5(b-2). The
probability of having a neuron with a potential near the threshold value, at any
given moment, is higher than in the case of a homogeneous network. Thus
the network can respond to any incoming pulses at a higer probability. This
results in an improved encoding of the input as illustrated by the spike train
shown in Fig. 5(c-2). In other words, since the neurons fired irregularly, they
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FIGURE 5

Transient responses of both homogencous and heterogeneous networks. (2) shows the input
signal, (b-1) shows the firing cvents of cach neuron, while (c-1) shows the summed puise output
for the three neurons in the homogeneous network. (b-2) shows the firing events, and (¢-2) shows
the summed pulse output of the heterogeneous network.
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FIGURE 6

Output firing rate of an enscmble of neurons ploited against the input pulse frequency. The
homogeneous network can encode signals of upto 500 MHz, as compared to operation range of
| GHz for the heterogencous network.

could transmit the input pulses with a higher temporal precision as opposed
to the homogeneous network. This is elaborated in more detail in Fig. 6,
where the transmission of signal over a wide range of frequencies is demon-
strated. The horizontal axis represents the frequency of input signals, while
the vertical axis shows the average firing rate (output frequency) for both
neuron sets. In the case of the homogenous network, since the neurons tend
to synchronize with time, their encoding frequency is the same as that of
individual neurons. Contrary, neurons in the heterogeneous network could
correctly encode signals with input frequencies upto 1 GHz, twice that of the
homogeneous network. This demonstrates that heterogeneity in the circuit
parameters (presence of static noises) plays an important role in improving
the fidelity with which neurons can encode signals with input frequencies far
beyond the encoding capacity of individual neurons.

6 EFFECT OF DYNAMIC NOISES

Hospedales et al. ([3]) investigated the importance of random noises in
improving the fidelity of signal transmission in the VOR. They concluded that
besides neuronal heterogeneity, externally induced noises also play an impor-
tant role in improving the network performance. These external noises could
be as a result of spontaneous increases or decreases of membrane potential
due to firing events in other neurons in the network. These changes are ran-
dom and are often referred to as dynamic noises. In our circuit, we studied the
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FIGURE 7

Qutput firing rate of an ensemble of neurons plotied against the input pulse frequency for tem-

perature T = 0.5 and {0 K. Dynamic noises as a result of increased temperature compensate for
the roll-off at higher temperatures,

effect of dynamic noises by considering thermally induced tunneling events in
the network. Fig. 7 shows the response characteristics of a network simulated
at 0.5K, and 10K. As the temperature increases, thermally induced tunneling
events in single-electron neurons increase, resulting in an increase in the aver-
age firing rate in the network. This is illustrated by the increased firing rate
at a temperature of 10 K. Although this work suggests that dynamic noises
don’t play a critical role in increasing the maximum response frequency of
the network, they however, increase the fidelity with which the network can
sample input signals within the maximum input signal frequency range deter-
mined by heterogeneity in the network elements. This is evident at higher
input frequencies, where the ratio of the output pulse rate to the input pulse
rate starts to roll-off rapidly. The roll off is compensated for by the dynamic
noises, which reduces the effect of waiting time in electron tunneling.

7 EFFECT OF DYNAMIC AND STATIC NOISES

To study the effect of both noises in the transmission fidelity of a heteroge-
neous network, we calculated the correlation between the input and the output
signals in a network of 100 noisy neurons. The neurons were fed with a bias
voltage of 8 mV, a sinusoidal input signal with a frequency (f) of 500, 400
and 200 MHz and peak-to-peak amplitude of 1 mV above the bias voltage.
The simulation results are shown in Fig. 8 where f = 500 MHz for (a), f =
400 MHz for (b), and f = 200 MHz for (c). The horizontal axis shows the
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operation temperature (T), while the vertical axis shows the variance (') of
the series resistances with a mean value of 100 MHz. The scale of the color
grading is shown on the right, with the light shading representing a corre-
lation value of 0.9, and the dark shading representing a correlation of 0.6.
From the results we observe that the network could produce the maximum
correlation value (Cyy,) of 0.87 at a variance of 30 MHz and a temperature of
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FIGURES®

Effect of static (variance) and dynamic noises (lemperature) to the cosrelation values in an

ensemble of neurons fed with various input signal frequencies: 500 MHz for (a), 400 MHz for
(b) and 200 MHz for (c).
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1.25 K, for the given set of circuit parameters and input signal frequency of
500 MHz, C,5« of 0.89 at a variance of 25 MHz and a temperature of 1.75 K
at an input frequency of 400 MHz, and Cp,.¢ of 0.88 at a variance of 20 MHz
and a temperature of 1.25 K at an input frequency of 200 MHz. This confirms
that the effect of static noises is more dominant in enhancing the fidelity of
transmission of high-frequency input signals.

8 CONCLUSION

In this study, we proposed and investigated the implication of heterogene-
ity in transmission of high frequency signals in a neural network. Through
Monte-Carlo based computer simulations, we confirmed that heterogeneity
in device parameters indeed improved the temporal precision with which the
network could transmit signals with high input frequencies within the net-
work. A heterogeneous network could correctly encode signals of up to |
GHz, as compared to 500 MHz in single neurons (or a network of homoge-
nous neurons). Another important factor to consider in improving the fidelity
of this circuit would be the effect of external and internal (dynamic) noises.
In single-electronic devices, such noises include thermally induced random
firing events or the effect of environmental noises. As we have shown, as the
temperature increases, the dynamic noises also increase, compensating for the
roll-off in response of the network, especially at high frequencies. Although a
comprehensive investigation on the implications of dynamic noises to signal
transmission is required, the preliminary results presented in this paper show
that in addition to heterogeneity in neuron properties, externally introduced
noises could assist in further improving the fidelity of signal encoding in
single-electron circuits. We should however, note that at higher temperatures,
beyond the results presented here, random tunneling as a result of dynamic
noises would increase rapidly leading to degradation of signal transmission.
Therefore, the value of dynamic noises to be introduced to the network to
achieve the best performance needs to be optimized.
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