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Abstract One of the most important processes of the brain is learning and recalling information; the memory func-
tion. Because the world in which we live is continuously changing, it is essential for intelligent systems to encode,
recognize and generate temporal patterns. Therefore, temporal information processing has great significance in bio-
inspired memory systems. A possible model for the storage of temporal sequences was proposed in [1]. On the basis of
this model, we propose a neural model capable of learning and recalling temporal sequences. The model is designed
to be suitable for implementation in analog metal-oxide-semiconductor (MOS) circuits. In this paper, we numerically
confirmed basic operations of the model. Moreover, we demonstrated fundamental circuit operations and confirmed
operations of the circuit network consisting of 20 neurons using a simulation program with integrated circuit emphasis
(SPICE).
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1. Introduction semiconductor (MOS) devices. In [1], Fukai proposed a
model for the storage of temporal sequences. In the model,

. . . . the Walsh series expansion [9] was used to represent the input
The brain has the ability to process information that changﬁe P [9] P b
t

. 7 ignal by linear superposition of rectangular periodic func-
over time. Therefore, it is necessary that systems, whe y Perp 9 P

e e i i s with different fundamental frequencies generated by
natural or artificial, have the ability to process mformauogn oscillatory subsystem. Often, the development of math-

th_at depends on the t.empora'll order of events. Studies on 'Eiifatical models for simulating large-scale neural networks
roimaging have provided evidence that the prefrontal cort&(

A . h ffers from problems of computer load (simulation time).
of the braln_ is involved in temporal sequencing [2]. Fur_the{.-hiS is avoided by using analog MOS circuits, which per-
more, studies on the olfactory bulb have shown that Imcc?‘Fﬁt real-time emulation of large-scale networks because, in

rTeat'rgT;gt.b!?log;ftilr::t[\g’]or[ﬁ takes the form of Space'tm:‘%)ntrast to discrete step processing (carried out in computer
u My P L simulations), one can design analog neural circuits in a par-

Patterns whose content depends on time are COMMAA4| manner if a parallel computing structure, based on the
called temporal sequenceThe processing of temporal sexonstruction of the brain, is known. Therefore, based on
quences has been a long-standing problem in artificial neytgkai's model we propose a modified neural model that is
networks. To process such kind of sequences, a short-tgffiaple for implementation with analog MOS circuits and is
memory is needed to extract and store the temporally orde&ggame of learning and recalling temporal sequences. The
sequences, and another mechanism is needed to retrieve thefe| consists of neural oscillators coupled to a common
Neural networks for processing temporal sequences are Ysipyt cell through positive or negative synaptic connections.
ally based on the multilayer perceptron or on the Hopfiefthe weights of the synaptic connections are strengthened (or
models [S]. In [6], a network for processing temporal sggeakened) when the output of the oscillatory cells overlap (or
quences has been proposed and applied to robotics. Makjgg, ot overlap) with the input sequence.
use of the Hebbian rule, the model is able to learn and recalfrhjs paper is organized as follows: Section 2 explains the
multiple trajectories with the help of time-varying informastructure and operations of our temporal coding model in-
tion. In addition, spatio-temporal sequence processing hawgding the numerical simulation results. Section 3 presents
been employed in neuromorphic VLSIs to mimic early visSUBlOS circuit implementation of the model. In section 4 we
processing [7] and associative memory functions [8]. demonstrate the operation of the circuit network using a simu-

In this paper, we focus on the implementation of such kitation program with integrated circuit emphasis (SPICE), and
of temporal-coding neural networks in analog metal-oxider«e conclude our work in section 5.
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Fig. 2 Definition of single learning cycle
Fig. 1 Proposed temporal coding model

The function of the model is to learn (record) temporal
2. Temporal Coding Model for Analog MOS Circuits  input sequencé () (¢ 0,1) of lengthT and to recall it as
recorded sequencgt). The model consists aV neural os-
Fukai proposed a model for the storage of temporal sequengifiators whose output®; (t) (€ 0,1; i = 1,..., N) are time-
in [1]. The main purpose of this model is the learning angrying periodic square waves with different fundamental fre-
the recalling of the temporal input stimuli. The model corjuencies. Each of the oscillators is connected to an output cell
sists of an input unit that triggers the oscillatory subsystethrough synaptic connections whose weights are denoted by
The oscillatory subsystem haé oscillatory subunits and anw; (i = 1,...,N). The output cell calculates the weighted
array of modifier cells. Each subunit consists of a pair efim of the oscillator outputs as
excitatory and inhibitory neural cells based on the Wilson-
Cowan system [10] and generates oscillatory activity with N
various rhythms and phases. These oscillatory cells are con- u(t) =Y wiQi(t) 1)
nected through synaptic connections to an array of modifier i=1

cells which transforms the oscillatory activity into reCtangl’\‘hrough cyclic learning processes;s in Eq. (1) are updated
lar patterns, and_c_ontrols their rhythms and phases. The tévery cycle to achieve(t) — I(t). Note that this expres-
puts of the modifier cells are connected to an output ¢ on,i.e, a weighted sum of square-wave functions with var-

fous fundamental frequencies, corresponds to a form of the

cells, through synaptic copnections. The output _ceII Sums\%}%lsh series expansion [9], which is a mathematical method
all the outputs of the modifier cells to recall the input sign approximate a certain class of functions, like the Fourier

in accor(;janc?1 With;h? Walzh Ifunction series [9]. e 3eries expansion.
Based on the Fukar's model, we propose a modified mo eNow, given a periodic input signal/(¢)) with period T

for learning and recalling temporal sequences that is suitag}ﬁ‘ the output«((t)), we define the mean square errdr)(
for implementation with analog MOS circuits. The mOdib?tween them as '

fied model is shown in Fig. 1. One of the characteristics 0
Fukai’'s model is the use of modifier cells. The modifier cells 1 rU+DT
change the activities of the oscillatory cells into rectangularE = ﬁ/

patternsj.e. the cells generate square-wave oscillations. In
addition, threshold values of the modifier cells are mOdiﬁed\Mherej represents the |earning Cyc|e_ To learn the input Sig-

improve the accuracy of the input-output approximation aftga| (7(t)) correctly, we need to minimize this error. This is
each learning cycle [1]. In our modified model, we elimigchieved by modifying the weighta) between the oscilla-

nated these modifier cells. Instead we used neural oscilss and the output cell according to the gradient descent rule:
tors that exhibit periodic square-wave oscillations. Therefore,

the modification of thresholds in modifier cells is not carried Sw; = —nOE |0w; (3)
out, which results in reducing accuracy of the learning in our
model. wheren represents a small positive constant indicating the

- [I(t) —u(t)]th (j = 0’1a27"') (2)
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Fig. 4 Time evolution of mean square errors

Fig. 3 Input ((¢)) and output sequences({)) of pro-

posed network with 200 oscillatory units after first . ) . ]
(a) 10th (b) and 100th learning (c) Numerical simulations were conducted to confirm the op-

eration of the model. In the simulation, output of the oscilla-
tory units@; (t) was defined by

learning rate. Substituting in Eq. (2) into Eq. (3), we obtain Qi(t) = H[sin(27 fit)] (6)

n G+1)T where f; represents a random frequency distributed between
ow; = — / [I(t) — u(t)]Qs(t) dt (4) 1and 10 using white noise sources, d&hgr) is the step func-
4T

r tion defined as:
The weights are updated at the end of each learning cycle 1 (z>0)
(t=(+1T)as H(z) = @)
0 (x<0)
P = wf S 5)

The results are shown in Fig. 3V( = 200, T = 1 and
The procedures abovieg., numerical calculations of Egs. (1), = 0.01). After the first learning (Fig. 3(a)), the inpuk({))
(4) and (5), are repeategl € 0, 1, - - -) until the error between and the output sequences({)) were completely different;
the input and the output becomes small enough. howeveru(t) approached (t) after repeated learning cycles

Because our model is meant for hardware implementatigRigs. 3(b) for 10th and (c) for 100th learning).

it is necessary to take physical time for updating the weightsFigure 4 shows the time evolution of the mean square er-
(Eg. (5)) and resetting the integrated value in Eq. (4) befaw (E) of the proposed network wittv = 1, 30, 100 and
starting another learning cycle, even though the updating &@0). The error decreased as the learning cygléncreased,
resetting terms are assumed to be zero in Egs. (4) and &)expected. Since the error valuesf#or= 30, 100 and 200
In practical hardware, a single learning cycle consists of tapproached the same value (.2), we can avoid implement-
input sequence’s lengtj, and the updating and resettingng a large number of oscillators and synaptic connections
terms, as shown in Fig. 2. Note that each oscillator’s starti-hardware. The error in our modified moded; 0.2 with
ing phase must be the same at the beginning of each learmifgL00 and 100 learning cycles) was about twice that of the
cycle. For example, oscillatorg; and(@)- in Fig. 2 have the original model & 0.1 with N=100 and 100 learning cycles;
same starting phase at the beginning of each learning cycld1]j. Despite this difference our modified model is applica-
the starting phases ¢f;s at thej-th learning cycle are differ- ble in areas that do not require errorless learning., low-
ent from that ofQ);s at the(j + 1)-th cycle, the update valuequality voice recording (learning) for mobile products, etc.
at the end of thg-th cycle ¢w,;) has no meaning. Because Furthermore, we evaluated the storage capacity of the pro-
thedw; is calculated by phase activities@fs in thej-th cy- posed network by defining pattern overlaps between the input
cle, and is effective only for decreasing errors witls in the and output sequences as a functiombfind the complexity
(7+1)-th cycle that has the same starting phases as iftthe of the input sequences. To define the complexityX), we
cycle. used Poisson spikes whose mean firing rate is represented by
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Fig. 6 Pattern overlap between input and output se-
A. Let us assume binary input sequerdce) with period T’ quences

andI(0) = “0". The expected number of spikes within period
T is thus)\/T. The value of the input sequence is flipped and
kept when a spike is generated., I(¢) (¢t > 0) remains “0”
if no spikes are generated, wherdds) (¢ > t1) is flipped
to “1” when a spike is generated at= ¢;. When a subse-
quent spike is generatediat to, I(t) (t > t2) is flipped to
“0". Figure 5 shows examples with/T' = 4. This process is

with slope(. Figure 7 shows a MOS circuit that implements
the Wilson-Cowan oscillator. The circuit consists of an oper-
ational transconductance amplifier (OTA) and a buffer circuit
composed of two standard inverters. When the time constants
repeated while < T of the Wilson-Cowan system are very small, we can rewrite

The pattern overlap between inpiitt) and output se- Egs. (9) and (10) as
quences(t) is defined by u ~  fa(u; —v;) (11)

fa(ui —0) (12)

1 (7 1\ 1 vi
"= T/O 2 (I(t) 2) x2 {H (u(t) 2) 2} dt The OTA's output voltagel(,) is expressed &g; - f (Vi —V5),
(8) while the output voltage of the buffer circui(,) is given by
whereI(t) is expanded tat1, and the Boolean values fory . f(Vin — Vin), wheref () represents a nominal Sigmoid-
threshold evaluatiofw(t) > 0.5) are also expanded tol.  |ike function, andV4, is the threshold voltage of the buffer
Figure 6 shows the average of the pattern overlaps betwegouit. Thus we obtain
10 different sets of input sequences and their respective out-
puts for different values of whenT = 1. Outputsu(t) were ui = Va- flui —v) (13)
obtained after the 100th learning cycle. We observed that the vi = Va-f(u;—Vin) (14)
pattern overlap decreased &sncreased. As expected, se- ] ) _
quences with small iterations are easier to learn than componnecting the inputs and outputsioandv; as shown in
sequences. Flg 7(V1 = VO = Uy, ‘/2 = ’L)Z',Vvin = Ui,VOQ = ’Ui), which
corresponds to Egs. (11) and (12). Here we wys® repre-
sentQ); as ViQ. The oscillatory state (oscillating or resting)
3. Analog MOS Circuits for Temporal Coding Model  an be controlled by changing the power supply voltage, (

First 4 Wil c illat 101 to imol V\{hich is necessary for setting the same starting phases at the
Irst, we used wiison-t.owan oscriators [ ] to imp eme'Beginning of each learning cycle, as explained in section 2.
the oscillator circuits. The dynamics are given by

Second, let us implement synaptic connections and an out-

Q

dug put cell in the proposed model. Because the weights between
o w + fo(ui —vy) (9) the oscillatory units and the output celb) in our model

dv; take both positive and negative values, it is important to con-
g - vt fo(u; —0) (10) sider how to represent positive and negative synaptic weights

in analog MOS circuits. Traditional circuits implement such
whereu; andv; represent the system variables of thih os- bipolar weights as resistors with voltage mode neurons hav-
cillator, 6 is the threshold angis(-) is the sigmoid function ing positive- and negative-gain unity amplifiers. According to
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the sign of the weights, one of the amplifiers must be selected. w20 1 w@y(®)
Implementing negative unity-gain amplifiers and the selec BOE) = N -
tion circuit may occupy a large area in analog LSls. There- 0= Z},(l,- -IMO(D ~ u(®)
fore we designed “current-mode circuits” where positive and (output current) -

negative synaptic weights are represented by “currents”.
Let us define a differential weight = w? — w™, where

bothw? andw™ take positive values, and introduce weight rig g8 Schematic showing the main idea for implementa-

voltagesV’> andV* which are proportional ta? andw™, tion of bipolar synapses and output cell

respectively. Through voltage-to-current converters (VIs),

VP and V™ are also converted into current8 and /™ and

then wired. This setup is illustrated in Fig. 8(a). Now, theQ ) o .

output current is given byIP — I™, which is proportional to V; - IS logical “1”, thg current of transmc;ml produced by

I andw can take both positivelf > I™) and negative cur- differential voltageV,” — V;n is copied tol; by currgnt mir-

rents (P < I™). Based on this idea, we designed a synap€¥ o-m10- At the same tl_me, the current of transistos is

circuit that connects the oscillator circuits and an output cEfPied toZ;" by current r_n|rror3m7p-m8 2”0'7”11'7”12- The

circuit. Figure 8(b) shows the concept of thh synapse OUtput current; is thus given by(l;" — I;")Q;(t).

circuit which calculates Eq. (1). Two ideal switches are in- AS €xplained in section 2, to learn the input sequences cor-

serted into the output lines of the VIs. Since both switches &RUY: it is necessary to minimize the error between the input

turned on (or off) when control voltag(éiQ (output of thei- and output sequences by updating jthe vyelghts according to

th oscillator) is “1” (or “0”), the output current is representefds- (4) and (5). So our next step is to implement Eq. (4).

by (IP — I™)Q; which is proportional tas;Q;. Figure 8(c) Sincejw; takes positive and negative values, we use the same

7 ) T 1 (4 T . . . .

illustrates the concept of the output cell, which sums up tislifferential’ strategy as in our synapse circuit. Assuming that

output currents of the synapse circuits. SinEe— 1)@, is 1 (t) andu(t) are represented by curreris(¢) and/"(t), re-

represented by current, the output currght) flowing from spectively, and that the currents are integrated by capacitors,

nodeA is we can rewrite Eq. (4) as
N
I u
() =Y (IF = IMQi(t) (15) owi o~ Vi =V (16)
i=1 1 pUHDT
vi= [T moeoa  an
which is thus proportional ta(t) (output of the proposed C Jjr
model). . 1 et
Figure 9 illustrates the MOS circuit for thieth synaptic Vil = & /jT I"(t)Qi(t)dt (18)

circuit model shown in Fig. 8(b). The circuit consists of two

pass transistorsi{; andmg) and a transconductance ampliwhere C' represents the capacitance. Currehtg¢) and

fier (m1-m4 andmz-m;2) that acts as a voltage-to-currenf®(t) are separately integrated by capacitors, and the inte-
converter (VI in Fig. 8(b)) with limited linear range. The amgrated values are represented by voltagéandV*.

plifier consists of a differential painf,, mo andmgs) and cur- A MOS circuit that implements Eqgs. (17) and (18), which
rent mirrors (n7-ms, mg-mig, mi1-mi2 andms-my4). When we call “integrator circuit”, is shown in Fig. 10. The circuit
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separated into positive and negative parts. The positive (or
Fig. 10 Integrator circuit negative)I? is copied toI’® (or I?™), whereas/’® = 0 (or
/™ = 0) whenI? < 0 (or I? > 0), as shown in Fig. 11(a)
right (or left).

A MOS circuit that producesggsp and 2™, which we call
consists of two current mirrors {(;-m; and mo-msg), two “piecewise linear (PWL) circuit”, is shown in Fig. 11(b). The
pass transistorsi{s andm,), two capacitors(’s), and two circuit consists of a differential pain{; to m3) and current
transistors for reset operations:{ andmg). WhenV,% is mirrors (n, to m;7). When the differential pair is operating
a logical “1”, I,,(t) and I*(t) are copied to pass trans|storm the subthreshold region, currerdtsand? are given by
mg andmy, respectively, by the current mirrors, and are in- s
tegrated by the capacitors. As explained in section 2, before It ] exp(kV}') (19)
starting each learning cyclé;/ and V%, must be reset to 0 "“exp(kVi) + exp(kVY)
by settingV; to “1". Remember that voltageg, andV,, in 2o exp(kV*) 20
Fig. 10 reflect the temporal inpuf (¢)) and output sequences - refexp(ﬁvir) +exp(kVY) (20)
(u(t)) that will be used to represent the simulation results in
section 4. The resulting differential current’{ = I, — I,) is propor-

Next, let us evaluate the difference between the integratimhal to the hyperbolic tangent &/ — V;*. Currents/* and
voltagesV,! and V* to calculate Eq. (16). Assume that thé? are copied ton; andmyg, respectively. Whed; > I (or
differential voltage is nonlinearly converted into currdiit I, < I), current mirrormy4-m15 copies (or does not copy)
by the transconductance amplifier. The characteristic is fl-— I, to I P This operation corresponds to Fig. 11(a) right.
lustrated in Fig. 11(a) (center). The transferred currentSsnuItaneously, currentg' and I? are copied tan;, and




|30 [ 8m learning cycle When the update is finished, is set to “1”. This process
' ' Vo1 reset is repeated until the difference between the input and output
0 ‘ seqguences becomes small enough.
A v ] update|
Lo ,
i yo! 4, Simulation Results
i 0
¢ I G, I T 7/ We conducted SPICE simulations for each circuit component
update and reset terms in section 3. In the simulations, we used TSMG5-um
(a) Weights update circuit (b) Timing Chart CMOS parameters. Figure 13(a) shows the results of a single

oscillator circuit, integrator circuit and PWL circuit. In the
oscillator circuit, all the dimensiong¥(/ L) of the transistors
Fig. 12 Weights update circuit and timing chart were set to 2um / 0.24m, andV,.; was set tat50 mV. The
supply voltagel/; was 2.5 V (or 0). We confirmed that i) the
circuit oscillated when the supply voltage was given, and ii)
mi2. Whenl, > I, (or I, < I), current mirrorm.g-m4; the starting phases at the beginning of the learning cycles (at
copies (or does not copy) — I; to I?™, which corresponds Va = 0 — 2.5 V; i.e, ¢ = 0.4 us and 0.8s) were the same,
to characteristics in Fig. 11(a) left. as shown in Fig. 13(a).

As explained in section 2, at the end of each oscillatory cy-Simulation results for the integrator circuit are shown in
cle T, the weights have to be updated according to Eq. (5j9- 13(b). All the dimensions of the transistors in the circuit
We have already separatéa; into positive and negativewere setto 0.3gm/0.24um. Input currentd;, and/* were
parts, as shown in Fig. 11(a), and obtained two positive c&ft to 1A and 2uA, respectively. Capacitaneg was set to
rentsI’® andI?™. Assuming that the bipolar weights are seg- PF, and the supply voltaggiq was set to 2.5 V. Figure
arately stored in capacitors and are updated with the amouk@éh) shows that independently of the control voltdg#,

of pr andI?™, then Eq. (5) can be rewritten as integrated voltage®;! andV;* were reset to 0 when the reset
control voltage 1;) was set to logical “1"{ = 0 ~ 0.25 us).
VP(t+ At) = VP(t) + g ]fp L (21) The integration started wheli. was set to “0” achZQ was
¢ “1", which resulted in an increase i/ andV* (t = 0.25 ~
VB (L + At) = V(1) + %@HIL (22) 0.5 ps). Then the integration stopped avd and V;* were

preserved wherV;Q was “0" (t = 0.5 ~ 0.75 us). Again,
whereC represents the capacitancg, the time step of learn- whenV, was set to “1”, the integrated voltages were reset to
ing, L the normalized binary value( V1,/Vaq) for control- zero ¢ = 0.75 ~ 1 us).

ling the weight updatel;” andV;™ the integrated (updated) Figure 13(c) shows the simulation results for a single PWL
weight values. When\t — 0, we obtain the differential circuit. The transistor dimensions were 7uth / 0.24 um

forms for m7; andmyg, 1.6 um / 0.24 um for mg andmy,, 0.72
dvP 5 pum [ 0.24 ym for my4 andmy7, and 0.36pum / 0.24 um
Co =L"L (23) for the remaining transistors. The supply voltaggq), V;*
dym s andV,.; were setto 2.5V, 1.25 V and 1V, respectively. As
C— =5"L (24)  shown in Fig. 13(c) we could obtain similar characteristics as

. . . Figs. 11(a) left and right;e., whenV;! > Vi“,pr was mono-

Figure 12(a) illustrates a MOS circuit that calculates Eqs. (Qt%ﬁ . I ' 5p .

and (24). During the update cycl@i( is logical “1%), I°P ically increased a¥;’ increased, whereak® remained
' ' i zero whenV/! < V¥, On the other hand, whevj! > V%,

Sm ' X
and ;™ are separately integrated by capacitoisand Cs, I?™ was zero while/{™ was monotonically decreased d$
respectively, via pass transistorg andms. Remember that . ¢

I u
the integrated valueg® and V™ represent the weight; (~ increased \_/vheih’l < Vi". . . L
b -y ¢ v : =~ . We confirmed the learning operation of the entire circuit
VP — V™) and they are fed back to thieh synapse circuit . o
sﬁown izn Fig. 9 with N = 20. The fundamental frequencieg;’6) of the os-

Figure 12(b) summarizes the circuit’s control voltages pg#lators were set by

single learning cycle (timing chart). Before each learning cy- fi ~ 0.3i + 1.1(MHz) (25)

cle is started}; is set to logical “1” to reset the weight update

valuessw; (V! = V;* = 0). At the beginning of each learn-wherei represents the neuron index, which results in a dis-
ing cycle, thel; of the oscillator circuit shown in Fig. 7 is setribution between 1.4 MHz and 7.1 MHz. The learning cycle
to Vyq and V;Q starts to exhibit square-wave oscillations. Awas set tal us with T', the updating and the resetting terms
the end of the oscillatory cyclé/ is set to O (thus the oscil-were set to 0.7:s, 0.1us and 0.2us, respectively. The input
lation stops) and in turn the weight update begiis € “1”). sequencesi(t)) were generated with current pulses of 0.1
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about 29 learning cycles (Fig. 16).

It is important to note that all the MOSFETS in the pro-
posed circuit operate in their sub-threshold region. To ensure
sub-threshold operation of the MOSFETS, we set bias voltage
Viet at the lower values of the MOSFETS threshold voltage,
) ) ) which results in fundamental frequencies of oscillators in the
pAin amplitude, and\/T" was set tok. Capacitances’; and  \z range, (about 1 MHz to 10 MHz for the upper bound fre-
C in Fig. 12(a) were set to pF, and the supply voltagéia  quency). Note that, it is possible to learn temporal sequences
was sett@.5 V. in the audio frequency (kHz range) by changing the bias volt-

Figure 14(a) shows the timing chart for a single learnirgye value V.¢) of the oscillator circuit from 0.09 V to 0.1
cycle. The time evolution of théth integrator outputsi(! V.
andV;") and those of the weight voltageg{ andV;™) are  Finally, we calculated the pattern overlaps in Eq. (8) be-
shown in Figs. 14(b) and (c), respectively. We could obsefygaen the input and output sequences produced by our cir-
thatV;" andV;* took almost the same valuése., errors be- cyits for different sets of input sequences.( The input
tween the input and output sequences became zero aftersggluences were generated with current pulsessofiA in
proximately 20 learning cycles. The weight voltages weggnplitude. The oscillatory cyclel), updating and resetting
successfully updated at the end of each learning cycle; whefns were set to the same values as in the simulations of
V' > Vi, the positive weight¥(”) was increased, whereasgigs. 14 to 16. The calculations were carried out for 1 and
whenV;! < V;* the negative weighti(;") was increased, un-30 neuron networks. The fundamental frequencies, set by
til the two attained stable values. Eq. (25), were distributed between 1.4 MHz and 10.1 MHz

The time courses of temporal input voltalde (~ I(t); see for N=30. Figure 17 shows the averaged pattern overlap be-
Fig. 10) and learned output voltadé (~ u(t)) are shown tween 10 different sets of input sequences and their outputs.
in Figs. 15 and 16. We could observe that andV,, were For comparison, numerical results of the network model in
different at the beginning (Fig. 15) but became similar afteection 2 with the same number of neurons are also shown

Fig. 13 Simulation results of circuit components



1 1 1
= 2.4 1 S 09l
5o ‘ ! g
2z A | 08 — |
2 st 2 03 _ ]
& _+1stlearning 10th learning ~_ 5 06
.- | | > . r -~ i -

1 cycle cycle ! © o5 R
_ | : 5 o4 N ]
g 2.4 : SR : ] = 0.3} .
2 | f( o 0ol T numerical results
o 1 : *“[ — SPICE simulation results
o™ 21 | { I 0.1 ‘ ‘ ‘ ‘ ‘
8 } } 2 3 4 5 6

1.6 :‘ ‘ ‘ ‘ . expected number of iterations A
"0 2 4 6 8 10
time (Us)

Fig. 17 Numerical and SPICE results showing pattern
overlaps between input and output sequences for
different Ns and complexity of input sequenge

Fig. 15 Evolution of temporal input sequenég, and
learned output sequendg, (first to 10th learn-
ing cycles)

model, we designed current-mode circuits where the input,
learning cycle (1 s) output, and the weight values were represented by currents.
; — We demonstrated the operation of each component of the net-
""""" l g i gl YA work using a simulation program with integrated circuit em-
! " " phasis (SPICE). Moreover, we confirmed operation of the en-
tire circuit with 20 neurons, and confirmed that after several
leaning cycles, the input and output sequence had the same

.
N

u

N
.

in
—_
©
T T
—
a
73]
a
—
EF EE R
q--
—
@
w
a
—

input and stored signal
V. (V)and V (V)

2 | update phase. The storage ability was also evaluated. WYien 30,
T(= 0.7 ps) the circuit could learn and recall binary temporal sequences
, T with 6 iterations in the learning cycle with the accuracy of
o9 ' 592 294 296 Zé 8 30 72% under physically plausible device configurations.
time (ULs)
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