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Abstract One of the most important processes of the brain is learning and recalling information; the memory func-
tion. Because the world in which we live is continuously changing, it is essential for intelligent systems to encode,
recognize and generate temporal patterns. Therefore, temporal information processing has great significance in bio-
inspired memory systems. A possible model for the storage of temporal sequences was proposed in [1]. On the basis of
this model, we propose a neural model capable of learning and recalling temporal sequences. The model is designed
to be suitable for implementation in analog metal-oxide-semiconductor (MOS) circuits. In this paper, we numerically
confirmed basic operations of the model. Moreover, we demonstrated fundamental circuit operations and confirmed
operations of the circuit network consisting of 20 neurons using a simulation program with integrated circuit emphasis
(SPICE).
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1. Introduction

The brain has the ability to process information that changes
over time. Therefore, it is necessary that systems, whether
natural or artificial, have the ability to process information
that depends on the temporal order of events. Studies on neu-
roimaging have provided evidence that the prefrontal cortex
of the brain is involved in temporal sequencing [2]. Further-
more, studies on the olfactory bulb have shown that infor-
mation in biological networks takes the form of space-time
neural activity patterns [3], [4].

Patterns whose content depends on time are commonly
called temporal sequence. The processing of temporal se-
quences has been a long-standing problem in artificial neural
networks. To process such kind of sequences, a short-term
memory is needed to extract and store the temporally ordered
sequences, and another mechanism is needed to retrieve them.
Neural networks for processing temporal sequences are usu-
ally based on the multilayer perceptron or on the Hopfield
models [5]. In [6], a network for processing temporal se-
quences has been proposed and applied to robotics. Making
use of the Hebbian rule, the model is able to learn and recall
multiple trajectories with the help of time-varying informa-
tion. In addition, spatio-temporal sequence processing have
been employed in neuromorphic VLSIs to mimic early visual
processing [7] and associative memory functions [8].

In this paper, we focus on the implementation of such kind
of temporal-coding neural networks in analog metal-oxide-

semiconductor (MOS) devices. In [1], Fukai proposed a
model for the storage of temporal sequences. In the model,
the Walsh series expansion [9] was used to represent the input
signal by linear superposition of rectangular periodic func-
tions with different fundamental frequencies generated by
an oscillatory subsystem. Often, the development of math-
ematical models for simulating large-scale neural networks
suffers from problems of computer load (simulation time).
This is avoided by using analog MOS circuits, which per-
mit real-time emulation of large-scale networks because, in
contrast to discrete step processing (carried out in computer
simulations), one can design analog neural circuits in a par-
allel manner if a parallel computing structure, based on the
construction of the brain, is known. Therefore, based on
Fukai’s model we propose a modified neural model that is
suitable for implementation with analog MOS circuits and is
capable of learning and recalling temporal sequences. The
model consists of neural oscillators coupled to a common
output cell through positive or negative synaptic connections.
The weights of the synaptic connections are strengthened (or
weakened) when the output of the oscillatory cells overlap (or
do not overlap) with the input sequence.

This paper is organized as follows: Section 2 explains the
structure and operations of our temporal coding model in-
cluding the numerical simulation results. Section 3 presents
MOS circuit implementation of the model. In section 4 we
demonstrate the operation of the circuit network using a simu-
lation program with integrated circuit emphasis (SPICE), and
we conclude our work in section 5.
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Fig. 1 Proposed temporal coding model

2. Temporal Coding Model for Analog MOS Circuits

Fukai proposed a model for the storage of temporal sequences
in [1]. The main purpose of this model is the learning and
the recalling of the temporal input stimuli. The model con-
sists of an input unit that triggers the oscillatory subsystem.
The oscillatory subsystem hasN oscillatory subunits and an
array of modifier cells. Each subunit consists of a pair of
excitatory and inhibitory neural cells based on the Wilson-
Cowan system [10] and generates oscillatory activity with
various rhythms and phases. These oscillatory cells are con-
nected through synaptic connections to an array of modifier
cells which transforms the oscillatory activity into rectangu-
lar patterns, and controls their rhythms and phases. The out-
puts of the modifier cells are connected to an output cell,
which is trained independently of the activity of modifier
cells, through synaptic connections. The output cell sums up
all the outputs of the modifier cells to recall the input signal
in accordance with the Walsh function series [9].

Based on the Fukai’s model, we propose a modified model
for learning and recalling temporal sequences that is suitable
for implementation with analog MOS circuits. The modi-
fied model is shown in Fig. 1. One of the characteristics of
Fukai’s model is the use of modifier cells. The modifier cells
change the activities of the oscillatory cells into rectangular
patterns,i.e., the cells generate square-wave oscillations. In
addition, threshold values of the modifier cells are modified to
improve the accuracy of the input-output approximation after
each learning cycle [1]. In our modified model, we elimi-
nated these modifier cells. Instead we used neural oscilla-
tors that exhibit periodic square-wave oscillations. Therefore,
the modification of thresholds in modifier cells is not carried
out, which results in reducing accuracy of the learning in our
model.
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Fig. 2 Definition of single learning cycle

The function of the model is to learn (record) temporal
input sequenceI(t) (∈ 0, 1) of lengthT and to recall it as
recorded sequenceu(t). The model consists ofN neural os-
cillators whose outputsQi(t) (∈ 0, 1; i = 1, ..., N ) are time-
varying periodic square waves with different fundamental fre-
quencies. Each of the oscillators is connected to an output cell
through synaptic connections whose weights are denoted by
wi (i = 1, ..., N ). The output cell calculates the weighted
sum of the oscillator outputs as

u(t) =
N∑

i=1

wiQi(t) (1)

Through cyclic learning processes,wis in Eq. (1) are updated
at every cycle to achieveu(t) → I(t). Note that this expres-
sion,i.e., a weighted sum of square-wave functions with var-
ious fundamental frequencies, corresponds to a form of the
Walsh series expansion [9], which is a mathematical method
to approximate a certain class of functions, like the Fourier
series expansion.

Now, given a periodic input signal (I(t)) with period T
and the output (u(t)), we define the mean square error (E)
between them as

E =
1

2T

∫ (j+1)T

jT

[I(t) − u(t)]2 dt (j = 0, 1, 2, · · ·) (2)

wherej represents the learning cycle. To learn the input sig-
nal (I(t)) correctly, we need to minimize this error. This is
achieved by modifying the weights (wi) between the oscilla-
tors and the output cell according to the gradient descent rule:

δwi = −η∂E/∂wi (3)

whereη represents a small positive constant indicating the
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learning rate. SubstitutingE in Eq. (2) into Eq. (3), we obtain

δwi =
η

T

∫ (j+1)T

jT

[I(t) − u(t)]Qi(t) dt (4)

The weights are updated at the end of each learning cycle
(t = (j + 1)T ) as

wnew
i = wold

i + δwi (5)

The procedures above,i.e., numerical calculations of Eqs. (1),
(4) and (5), are repeated (j = 0, 1, · · ·) until the error between
the input and the output becomes small enough.

Because our model is meant for hardware implementation,
it is necessary to take physical time for updating the weights
(Eq. (5)) and resetting the integrated value in Eq. (4) before
starting another learning cycle, even though the updating and
resetting terms are assumed to be zero in Eqs. (4) and (5).
In practical hardware, a single learning cycle consists of the
input sequence’s length (T ), and the updating and resetting
terms, as shown in Fig. 2. Note that each oscillator’s start-
ing phase must be the same at the beginning of each learning
cycle. For example, oscillatorsQ1 andQ2 in Fig. 2 have the
same starting phase at the beginning of each learning cycle. If
the starting phases ofQis at thej-th learning cycle are differ-
ent from that ofQis at the(j + 1)-th cycle, the update value
at the end of thej-th cycle (δwi) has no meaning. Because
theδwi is calculated by phase activities ofQis in thej-th cy-
cle, and is effective only for decreasing errors withQis in the
(j+1)-th cycle that has the same starting phases as in thej-th
cycle.
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Fig. 4 Time evolution of mean square errors

Numerical simulations were conducted to confirm the op-
eration of the model. In the simulation, output of the oscilla-
tory unitsQi(t) was defined by

Qi(t) = H[sin(2πfit)] (6)

wherefi represents a random frequency distributed between
1 and 10 using white noise sources, andH(x) is the step func-
tion defined as:

H(x) =

 1 (x > 0)

0 (x < 0)
(7)

The results are shown in Fig. 3 (N = 200, T = 1 and
η = 0.01). After the first learning (Fig. 3(a)), the input (I(t))
and the output sequences (u(t)) were completely different;
however,u(t) approachedI(t) after repeated learning cycles
(Figs. 3(b) for 10th and (c) for 100th learning).

Figure 4 shows the time evolution of the mean square er-
ror (E) of the proposed network withN = 1, 30, 100 and
200. The error decreased as the learning cycle (j) increased,
as expected. Since the error values forN = 30, 100 and 200
approached the same value (≈ 0.2), we can avoid implement-
ing a large number of oscillators and synaptic connections
in hardware. The error in our modified model, (≈ 0.2 with
N=100 and 100 learning cycles) was about twice that of the
original model (≈ 0.1 with N=100 and 100 learning cycles;
[1]). Despite this difference our modified model is applica-
ble in areas that do not require errorless learning,e.g., low-
quality voice recording (learning) for mobile products, etc.

Furthermore, we evaluated the storage capacity of the pro-
posed network by defining pattern overlaps between the input
and output sequences as a function ofN and the complexity
of the input sequences. To define the complexity (≡ λ), we
used Poisson spikes whose mean firing rate is represented by
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λ. Let us assume binary input sequenceI(t) with periodT
andI(0) = “0”. The expected number of spikes within period
T is thusλ/T . The value of the input sequence is flipped and
kept when a spike is generated;i.e., I(t) (t > 0) remains “0”
if no spikes are generated, whereasI(t) (t > t1) is flipped
to “1” when a spike is generated att = t1. When a subse-
quent spike is generated att = t2, I(t) (t > t2) is flipped to
“0”. Figure 5 shows examples withλ/T = 4. This process is
repeated whilet ≤ T

The pattern overlap between inputI(t) and output se-
quencesu(t) is defined by

m ≡ 1
T

∫ T

0

2
(

I(t) − 1
2

)
× 2

[
H

(
u(t) − 1

2

)
− 1

2

]
dt

(8)
whereI(t) is expanded to±1, and the Boolean values for
threshold evaluation(u(t) > 0.5) are also expanded to±1.

Figure 6 shows the average of the pattern overlaps between
10 different sets of input sequences and their respective out-
puts for different values ofλ whenT = 1. Outputsu(t) were
obtained after the 100th learning cycle. We observed that the
pattern overlap decreased asλ increased. As expected, se-
quences with small iterations are easier to learn than complex
sequences.

3. Analog MOS Circuits for Temporal Coding Model

First, we used Wilson-Cowan oscillators [10] to implement
the oscillator circuits. The dynamics are given by

dui

dt
= −ui + fβ(ui − vi) (9)

dvi

dt
= −vi + fβ(ui − θ) (10)

whereui andvi represent the system variables of thei-th os-
cillator, θ is the threshold andfβ(·) is the sigmoid function
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quences

with slopeβ. Figure 7 shows a MOS circuit that implements
the Wilson-Cowan oscillator. The circuit consists of an oper-
ational transconductance amplifier (OTA) and a buffer circuit
composed of two standard inverters. When the time constants
of the Wilson-Cowan system are very small, we can rewrite
Eqs. (9) and (10) as

ui ≈ fβ(ui − vi) (11)

vi ≈ fβ(ui − θ) (12)

The OTA’s output voltage (Vo) is expressed asVd ·f(V1−V2),
while the output voltage of the buffer circuit (Vo2) is given by
Vd · f(Vin − Vth), wheref(·) represents a nominal Sigmoid-
like function, andVth is the threshold voltage of the buffer
circuit. Thus we obtain

ui = Vd · f(ui − vi) (13)

vi = Vd · f(ui − Vth) (14)

by connecting the inputs and outputs toui andvi as shown in
Fig. 7 (V1 = Vo = ui, V2 = vi, Vin = ui, Vo2 = vi), which
corresponds to Eqs. (11) and (12). Here we usevi to repre-
sentQi asV Q

i . The oscillatory state (oscillating or resting)
can be controlled by changing the power supply voltage (Vd),
which is necessary for setting the same starting phases at the
beginning of each learning cycle, as explained in section 2.

Second, let us implement synaptic connections and an out-
put cell in the proposed model. Because the weights between
the oscillatory units and the output cell (wis) in our model
take both positive and negative values, it is important to con-
sider how to represent positive and negative synaptic weights
in analog MOS circuits. Traditional circuits implement such
bipolar weights as resistors with voltage mode neurons hav-
ing positive- and negative-gain unity amplifiers. According to
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the sign of the weights, one of the amplifiers must be selected.
Implementing negative unity-gain amplifiers and the selec-
tion circuit may occupy a large area in analog LSIs. There-
fore we designed “current-mode circuits” where positive and
negative synaptic weights are represented by “currents”.

Let us define a differential weightw ≡ wp − wm, where
both wp andwm take positive values, and introduce weight
voltagesV p andV m which are proportional towp andwm,
respectively. Through voltage-to-current converters (VIs),
V p andV m are also converted into currentsIp andIm and
then wired. This setup is illustrated in Fig. 8(a). Now, the
output currentI is given byIp− Im, which is proportional to
I andw can take both positive (Ip > Im) and negative cur-
rents (Ip < Im). Based on this idea, we designed a synapse
circuit that connects the oscillator circuits and an output cell
circuit. Figure 8(b) shows the concept of thei-th synapse
circuit which calculates Eq. (1). Two ideal switches are in-
serted into the output lines of the VIs. Since both switches are
turned on (or off) when control voltageV Q

i (output of thei-
th oscillator) is “1” (or “0”), the output current is represented
by (Ip

i − Im
i )Qi which is proportional towiQi. Figure 8(c)

illustrates the concept of the output cell, which sums up the
output currents of the synapse circuits. Since(Ip

i − Im
i )Qi is

represented by current, the output currentIu(t) flowing from
nodeA is

Iu(t) =
N∑

i=1

(Ip
i − Im

i )Qi(t) (15)

which is thus proportional tou(t) (output of the proposed
model).

Figure 9 illustrates the MOS circuit for thei-th synaptic
circuit model shown in Fig. 8(b). The circuit consists of two
pass transistors (m5 andm6) and a transconductance ampli-
fier (m1-m4 and m7-m12) that acts as a voltage-to-current
converter (VI in Fig. 8(b)) with limited linear range. The am-
plifier consists of a differential pair (m1, m2 andm3) and cur-
rent mirrors (m7-m8, m9-m10, m11-m12 andm3-m4). When
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Fig. 8 Schematic showing the main idea for implementa-
tion of bipolar synapses and output cell

V Q
i is logical “1”, the current of transistorm1 produced by

differential voltageV p
i − V m

i is copied toIp
i by current mir-

ror m9-m10. At the same time, the current of transistorm2 is
copied toIm

i by current mirrorsm7-m8 andm11-m12. The
output currentIi is thus given by(Ip

i − Im
i )Qi(t).

As explained in section 2, to learn the input sequences cor-
rectly, it is necessary to minimize the error between the input
and output sequences by updating the weights according to
Eqs. (4) and (5). So our next step is to implement Eq. (4).
Sinceδwi takes positive and negative values, we use the same
‘differential’ strategy as in our synapse circuit. Assuming that
I(t) andu(t) are represented by currentsIin(t) andIu(t), re-
spectively, and that the currents are integrated by capacitors,
we can rewrite Eq. (4) as

δwi ∼ V I
i − V u

i (16)

V I
i ≡ 1

C

∫ (j+1)T

jT

Iin(t)Qi(t)dt (17)

V u
i ≡ 1

C

∫ (j+1)T

jT

Iu(t)Qi(t)dt (18)

where C represents the capacitance. CurrentsIin(t) and
Iu(t) are separately integrated by capacitors, and the inte-
grated values are represented by voltagesV I

i andV u
i .

A MOS circuit that implements Eqs. (17) and (18), which
we call “integrator circuit”, is shown in Fig. 10. The circuit
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consists of two current mirrors (m1-m7 and m2-m8), two
pass transistors (m3 andm4), two capacitors (C ’s), and two
transistors for reset operations (m5 andm6). WhenV Q

i is
a logical “1”, Iin(t) andIu(t) are copied to pass transistors
m3 andm4, respectively, by the current mirrors, and are in-
tegrated by the capacitors. As explained in section 2, before
starting each learning cycle,V I

i andV u
i , must be reset to 0

by settingVr to “1”. Remember that voltagesVin andVu in
Fig. 10 reflect the temporal input (I(t)) and output sequences
(u(t)) that will be used to represent the simulation results in
section 4.

Next, let us evaluate the difference between the integrated
voltagesV I

i andV u
i to calculate Eq. (16). Assume that the

differential voltage is nonlinearly converted into currentIδ
i

by the transconductance amplifier. The characteristic is il-
lustrated in Fig. 11(a) (center). The transferred current is
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ues

separated into positive and negative parts. The positive (or
negative)Iδ

i is copied toIδp
i (or Iδm

i ), whereasIδp
i = 0 (or

Iδm
i = 0) whenIδ

i < 0 (or Iδ
i > 0), as shown in Fig. 11(a)

right (or left).
A MOS circuit that producesIδp

i andIδm
i , which we call

“piecewise linear (PWL) circuit”, is shown in Fig. 11(b). The
circuit consists of a differential pair (m1 to m3) and current
mirrors (m4 to m17). When the differential pair is operating
in the subthreshold region, currentsI1 andI2 are given by

I1 = Iref
exp(κV I

i )
exp(κV I

i ) + exp(κV u
i )

(19)

I2 = Iref
exp(κV u

i )
exp(κV I

i ) + exp(κV u
i )

(20)

The resulting differential current (Iδ
i = I1 − I2) is propor-

tional to the hyperbolic tangent ofV I
i − V u

i . CurrentsI1 and
I2 are copied tom7 andm9, respectively. WhenI1 > I2 (or
I1 < I2), current mirrorm14-m15 copies (or does not copy)
I1 − I2 to Iδp

i . This operation corresponds to Fig. 11(a) right.
Simultaneously, currentsI1 and I2 are copied tom10 and
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m12. WhenI2 > I1 (or I2 < I1), current mirrorm16-m17

copies (or does not copy)I2 − I1 to Iδm
i , which corresponds

to characteristics in Fig. 11(a) left.
As explained in section 2, at the end of each oscillatory cy-

cle T , the weights have to be updated according to Eq. (5).
We have already separatedδwi into positive and negative
parts, as shown in Fig. 11(a), and obtained two positive cur-
rentsIδp

i andIδm
i . Assuming that the bipolar weights are sep-

arately stored in capacitors and are updated with the amounts
of Iδp

i andIδm
i , then Eq. (5) can be rewritten as

V p
i (t + ∆t) = V p

i (t) +
∆t

C
Iδp
i L (21)

V m
i (t + ∆t) = V m

i (t) +
∆t

C
Iδm
i L (22)

whereC represents the capacitance,∆t the time step of learn-
ing, L the normalized binary value (≡ VL/Vdd) for control-
ling the weight update,V p

i andV m
i the integrated (updated)

weight values. When∆t → 0, we obtain the differential
forms

C
dV p

i

dt
= Iδp

i L (23)

C
dV m

i

dt
= Iδm

i L (24)

Figure 12(a) illustrates a MOS circuit that calculates Eqs. (23)
and (24). During the update cycle (VL is logical “1”), Iδp

i

andIδm
i are separately integrated by capacitorsC1 andC2,

respectively, via pass transistorsm1 andm2. Remember that
the integrated valuesV p

i andV m
i represent the weightwi (∼

V p
i − V m

i ), and they are fed back to thei-th synapse circuit
shown in Fig. 9.

Figure 12(b) summarizes the circuit’s control voltages per
single learning cycle (timing chart). Before each learning cy-
cle is started,Vr is set to logical “1” to reset the weight update
valuesδwi (V I

i = V u
i = 0). At the beginning of each learn-

ing cycle, theVd of the oscillator circuit shown in Fig. 7 is set
to Vdd andV Q

i starts to exhibit square-wave oscillations. At
the end of the oscillatory cycle,Vd is set to 0 (thus the oscil-
lation stops) and in turn the weight update begins (VL = “1”).

When the update is finished,Vr is set to “1”. This process
is repeated until the difference between the input and output
sequences becomes small enough.

4. Simulation Results

We conducted SPICE simulations for each circuit component
in section 3. In the simulations, we used TSMC0.35-µm
CMOS parameters. Figure 13(a) shows the results of a single
oscillator circuit, integrator circuit and PWL circuit. In the
oscillator circuit, all the dimensions (W/L) of the transistors
were set to 2µm / 0.24µm, andVref was set to450 mV. The
supply voltageVd was 2.5 V (or 0). We confirmed that i) the
circuit oscillated when the supply voltage was given, and ii)
the starting phases at the beginning of the learning cycles (at
Vd = 0 → 2.5 V; i.e., t = 0.4 µs and 0.8µs) were the same,
as shown in Fig. 13(a).

Simulation results for the integrator circuit are shown in
Fig. 13(b). All the dimensions of the transistors in the circuit
were set to 0.36µm / 0.24µm. Input currentsIin andIu were
set to 1µA and 2µA, respectively. CapacitanceC was set to
1 pF, and the supply voltageVdd was set to 2.5 V. Figure
13(b) shows that independently of the control voltageV Q

i ,
integrated voltagesV I

i andV u
i were reset to 0 when the reset

control voltage (Vr) was set to logical “1” (t = 0 ∼ 0.25 µs).
The integration started whenVr was set to “0” andV Q

i was
“1”, which resulted in an increase inV I

i andV u
i (t = 0.25 ∼

0.5 µs). Then the integration stopped andV I
i andV u

i were
preserved whenV Q

i was “0” (t = 0.5 ∼ 0.75 µs). Again,
whenVr was set to “1”, the integrated voltages were reset to
zero (t = 0.75 ∼ 1 µs).

Figure 13(c) shows the simulation results for a single PWL
circuit. The transistor dimensions were 7.2µm / 0.24µm
for m7 andm10, 1.6 µm / 0.24µm for m9 andm12, 0.72
µm / 0.24 µm for m14 and m17, and 0.36µm / 0.24 µm
for the remaining transistors. The supply voltage (Vdd), V u

i

andVref were set to 2.5 V, 1.25 V and 1 V, respectively. As
shown in Fig. 13(c) we could obtain similar characteristics as
Figs. 11(a) left and right;i.e., whenV I

i > V u
i , Iδp

i was mono-
tonically increased asV I

i increased, whereasIδp
i remained

zero whenV I
i < V u

i . On the other hand, whenV I
i > V u

i ,
Iδm
i was zero whileIδm

i was monotonically decreased asV I
i

increased whenV I
i < V u

i .
We confirmed the learning operation of the entire circuit

with N = 20. The fundamental frequencies (fi’s) of the os-
cillators were set by

fi ≈ 0.3i + 1.1(MHz) (25)

wherei represents the neuron index, which results in a dis-
tribution between 1.4 MHz and 7.1 MHz. The learning cycle
was set to1 µs with T , the updating and the resetting terms
were set to 0.7µs, 0.1µs and 0.2µs, respectively. The input
sequences (I(t)) were generated with current pulses of 0.1
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µA in amplitude, andλ/T was set to4. CapacitancesC1 and
C2 in Fig. 12(a) were set to1 pF, and the supply voltageVdd

was set to2.5 V.

Figure 14(a) shows the timing chart for a single learning
cycle. The time evolution of thei-th integrator outputs (V I

i

andV u
i ) and those of the weight voltages (V p

i andV m
i ) are

shown in Figs. 14(b) and (c), respectively. We could observe
thatV I

i andV u
i took almost the same values;i.e., errors be-

tween the input and output sequences became zero after ap-
proximately 20 learning cycles. The weight voltages were
successfully updated at the end of each learning cycle; when
V I

i > V u
i , the positive weight (V p

i ) was increased, whereas,
whenV I

i < V u
i the negative weight (V m

i ) was increased, un-
til the two attained stable values.

The time courses of temporal input voltageVin (∼ I(t); see
Fig. 10) and learned output voltageVu (∼ u(t)) are shown
in Figs. 15 and 16. We could observe thatVin andVu were
different at the beginning (Fig. 15) but became similar after
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Fig. 14 Simulation results of circuit network withN=20

about 29 learning cycles (Fig. 16).
It is important to note that all the MOSFETs in the pro-

posed circuit operate in their sub-threshold region. To ensure
sub-threshold operation of the MOSFETs, we set bias voltage
Vref at the lower values of the MOSFETs threshold voltage,
which results in fundamental frequencies of oscillators in the
MHz range, (about 1 MHz to 10 MHz for the upper bound fre-
quency). Note that, it is possible to learn temporal sequences
in the audio frequency (kHz range) by changing the bias volt-
age value (Vref ) of the oscillator circuit from 0.09 V to 0.1
V.

Finally, we calculated the pattern overlaps in Eq. (8) be-
tween the input and output sequences produced by our cir-
cuits for different sets of input sequences (λ). The input
sequences were generated with current pulses of0.5 µA in
amplitude. The oscillatory cycle (T ), updating and resetting
terms were set to the same values as in the simulations of
Figs. 14 to 16. The calculations were carried out for 1 and
30 neuron networks. The fundamental frequencies, set by
Eq. (25), were distributed between 1.4 MHz and 10.1 MHz
for N=30. Figure 17 shows the averaged pattern overlap be-
tween 10 different sets of input sequences and their outputs.
For comparison, numerical results of the network model in
section 2 with the same number of neurons are also shown
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in the figure. The difference between the SPICE and numeri-
cal results are caused by the limited linear ranges of synapse
circuit’s VIs and PWL circuits. These results show that the
circuit network ofN = 30 can retrieve input sequence of
λ/T = 6/(0.7 µs) ≈ 8.6 × 106 (s−1) with an accuracy of
72% (m ≈ 0.72), which indicates that the circuit can learn
and recall temporal sequence of 4.3 MHz under our device
setups.

5. Conclusion

In this paper, we designed a neural circuit for temporal cod-
ing. The network circuit was designed by analog metal-
oxide-semiconductor (MOS) devices. The model consists
of N oscillatory units connected to an output cell through
synaptic connections. To facilitate the implementation of the
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Fig. 17 Numerical and SPICE results showing pattern
overlaps between input and output sequences for
differentNs and complexity of input sequenceλ

model, we designed current-mode circuits where the input,
output, and the weight values were represented by currents.
We demonstrated the operation of each component of the net-
work using a simulation program with integrated circuit em-
phasis (SPICE). Moreover, we confirmed operation of the en-
tire circuit with 20 neurons, and confirmed that after several
leaning cycles, the input and output sequence had the same
phase. The storage ability was also evaluated. WhenN = 30,
the circuit could learn and recall binary temporal sequences
with 6 iterations in the learning cycle with the accuracy of
72% under physically plausible device configurations.
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